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in ෙhe ඝa෈ෙ few years there has been an increasing interest in au-
tomating the development and implementation of cryptographic
schemes, which traditionally are manual, difficult and error-prone
tasks. Projects including AutoBatch and AutoGroup+ mechanically
generate cryptographic schemes, and use a Domain-Specific Language
(d෈l) called the Scheme Description Language (෈dl) to represent
them; but, despite being a critical component in these systems, ෈dl is
significantly limited. We introduce a redesigned ෈dl which addresses
these shortcomings: we extend the language with new features, provide
a formal specification, define a type system and several other static
analyses, allow it to express various kinds of cryptographic schemes,
and present techniques for manipulation via term rewriting. Finally,
we explore two applications: a simple transformer to assert the con-
sistent use of group operators (additive vs. multiplicative notation);
and a generalization of AutoBatch, which includes more sophisticated
term rewriting. Operations that previously required hundreds of lines
of code in the original AutoBatch implementation are expressed with
our techniques in less then ten lines. Overall, the redesigned ෈dl is a
more solid and practical foundation upon which to build cryptographic-
system development automations.

1 Introduction
c඲ฬඝෙog඲aඝhe඲෈ ෙ඲adiෙionallฬ develop cryptographic
schemes manually, and communicate the results through papers. This
work is difficult, prone to errors, and does not scale in accordance to
the increasing demand for customized cryptographic schemes. But
some tasks in the development of cryptographic schemes are me-
chanical, so recent research has been addressing these issues using
automation.3 For example, on the realm of pairing-based cryptog-
raphy,4 AutoBatch5 mechanizes the development of verifiers for
batches of digital signatures from schemes for a single signature, op-
timizing for parameters including the batch size. Along these lines,
another project called AutoGroup+6 automatically converts signa-
ture schemes using symmetric (Type-i) bilinear maps into signature
schemes using asymmetric (Type-i i i) bilinear maps. The former are
more convenient for humans, but the latter are more performant,
and AutoGroup+ converts from one to the other while preserving the
correctness and security proofs.

Systems including AutoBatch and AutoGroup+ cannot directly
work over specifications of cryptographic schemes on papers. Those
descriptions are often too high-level, ambiguous and not machine-
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friendly. On the other end of the abstraction spectrum there are im-
plementations of these cryptographic schemes in general purpose
programming languages (for example, C). These are not suitable for
the purposes of automation either, for the opposite reason: they are
too low-level and close to the machine, so the essence of the cryp-
tographic schemes is lost in implementation details. We need a lan-
guage with the right level of abstraction, that is as close as possible to
the mathematical specifications cryptographers write on papers, but
unambiguous, precise and machine-friendly.

The solution introduced by AutoBatch and AutoGroup+ is a
Domain-Specific Language (d෈l) called Scheme Description Lan-
guage (෈dl). ෈dl is not a general purpose programming language, it
is constrained for the purpose of defining cryptographic schemes in a
way that is convenient for cryptographers and machines alike.7 ෈dl
is a core component in AutoBatch and AutoGroup+, serving as input
and output language, as well as internal representation for rewriting
steps.

But the goal of AutoBatch and AutoGroup+ was not to design ෈dl,
it was to explore automation in the development of pairing-based
cryptographic schemes. And these projects were successful in that
regard: AutoBatch, for example, was able to reproduce several results
from the literature and discover novel optimizations. But, because the
design of ෈dl was incidental, it has several flaws:

• According to the authors, the implementation is research-grade
software in terms of code quality, and is not easy to maintain.

• There is no formal specification for the language.
• The language is artificially restricted to simplify the implementa-
tion. For example, iterations can only be nested one level deep.

• The language only has the features necessary to support pairing-
based signature schemes and some encryption schemes such as
identity-based encryption8 and partial specification of attribute-
based encryption.9 However, the language does not fully support
general cryptographic systems such as functional encryption and
cryptographic protocols.

• There is a type system which detects basic errors cryptographers
make when specifying schemes, but it is limited and requires a
fair amount of manual annotation. And there are no other static
analyses besides the type system.

ผe inෙ඲od෮ce a redesigned ෈dl which addresses all the con-
cerns above. We simplify the language to contain only the essential
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or keywords for block delimiters.

features, while adding a few missing ones, for example, arbitrarily
nested loops. Initially, we focus on pairing-based signature schemes,
but the design is extensible for general cryptographic systems includ-
ing public-key encryption, identity-based encryption, attribute-based
encryption, cryptographic protocols and so forth. Our major contri-
bution is a formal specification for ෈dl, which aids reasoning about
cryptographic schemes both by machines and humans, including the
following:

• A grammar for the abstract syntax (§ 3).10

• A collection of syntactic analyses to extract information from the
cryptographic schemes (§ 4).

• A checker for well-formedness, which asserts proper use of identi-
fiers and variable scope (§ 5).

• A type system with type inference (§ 6).
• A symmetry analysis (§ 7), to detect whether the cryptographic
scheme uses symmetric (Type-i) bilinear maps or asymmetric
(Type-i i i) bilinear maps, and to guarantee that they do not coa-
lesce the two, which would be invalid.

• A dependence analysis (§ 8), to ascertain how data flows through
the cryptographic scheme.

• A check of whether the cryptographic scheme is a valid signature
scheme (§ 9). This includes checking for the presence of the neces-
sary algorithms, that variables local to an algorithm are used, that
information flows in a way to not disclose private information, and
so forth.

beฬond ෙhe ෈dl specification, we also introduce techniques for
manipulation via term rewriting applicable to cryptographic schemes
(§ 10). They form an engine for mechanically exploring spaces of pos-
sible transformations over cryptographic schemes, with the possibility
of optimizing for certain cost functions. We explore two applications:

• Consistent use of group operators (§ 11). There are two notations for
operations over group elements: multiplicative (× / ÷) and addi-
tive (+ / −). While these notations are equivalent, it is necessary
to consistently use only one or the other throughout the specifi-
cation of a cryptographic scheme. Our system verifies this and, to
facilitate further processing, converts from additive notation into
multiplicative. This serves as a simple introductory example for the
term-rewriting techniques.
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• AutoBatch generalization (§ 12). We recreate the core of the original
AutoBatch system for the redesigned ෈dl. This requires more
sophisticated term rewriting, including context-dependent rules.
We only cover the core aspects of AutoBatch: semantics-preserving
term rewriting and a goal-directed search. The rest of the system—
for example, the heuristics dictated by cryptographers to prune the
search space—is beyond the scope of this report.

෈dl i෈ a specification d෈l, decoupled from concrete implemen-
tations, but the end goal is to generate executable code for crypto-
graphic schemes. A code-generation back-end can translate ෈dl into
a library in a general-purpose programming language, and it is pos-
sible to develop multiple independent back-ends for different target
languages using the term rewriting techniques presented above. So,
to complete the specification of ෈dl, we define an interface expected
by these back-ends for the primitive data and operations, for example,
hash functions and exponentiation for group elements (§ 13).

all definiෙion෈ in ෈dl specification are executable code as well,
because they were developed using a framework which is also at the
core of our term-rewriting techniques: ඝlෙ Redex.11 This document
was typeset directly from the sources,12 and serves as technical docu-
mentation for developers.

2 Architecture
ෙhe high-leฑel ෈dl architecture is that of a traditional com-
piler:13

Scheme
Description

Abstract
Syntax
Tree

C++
Python
LaTeX
Rust

Parser

Front-End

Code Generators

Back-EndsAnalyzers,
Verifiers

and Transformers

Cryptographers specify cryptographic schemes as plain text, which
is parsed into an Abstract Syntax Tree (a෈ෙ) by the compiler front-
end. The a෈ෙ also serves as an intermediate representation for a
series of analyzers, verifiers and transformers. Analyzers extract in-
formation from the cryptographic schemes; verifiers find issues in the
schemes and signal errors, preventing them from proceeding on the
pipeline; and transformers rewrite the schemes, for example, to opti-
mize them for a specific task. Finally, a back-end for code generation
transforms the a෈ෙ into a library in a general-purpose programming
language.14 As a special case, a LATEX back-end typesets the crypto-

https://github.com/jakinyele/sdl-tools/tree/qualifying-project-report
https://github.com/jakinyele/sdl-tools/tree/qualifying-project-report
https://github.com/jakinyele/sdl-tools/tree/qualifying-project-report
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 Analyzer
 Verifier
 Transformer

graphic schemes, which is used for writing papers and inspecting the
transformers.

ෙhe ෈coඝe of this qualifying project is specifying the a෈ෙ, and the
analyzers, verifiers and transformers. Specifically, the concrete syntax
that cryptographers write, the parsing of this syntax, and code generation
are beyond our scope (§ 14). But we provide general techniques for
term rewriting which can be used in code generators (§ 10), and we
specify the interface for the cryptographic primitives in the generated
code (§ 13). These cryptographic primitives are provided by third-
party libraries for pairing-based cryptography, for example, Charm.15

analฬ็e඲෈, ฑe඲ifie඲෈ and transformers are defined as small,
independent passes over the a෈ෙ, to simplify the presentation and
promote reuse. This is in the spirit of Nanopass,16 though we do not
use the tool. The passes are ordered and each of them assumes suc-
cessful completion of the preceding, for example, the type inferencer
(§ 6) is after the well-formedness verifier in the pipeline, so it is only
defined for well-formed cryptographic schemes (§ 5). Moreover, later
passes might depend on information collected by earlier passes. The
following is the ordered list of passes:
•  Syntactic Analyses
•  Well-Formedness Condition
•  Type System—Type Inference
•  Consistent Use of Group Operators
•  Type System—Type Checking
•   Symmetry Analysis
•  Dependence Analysis
•  Signature Scheme Verification
•  Term Rewriting
•  AutoBatch Generalization

ผe ෮෈e ඲edeล to specify the a෈ෙ, the passes, and the auxiliary
data structures, for example, dependency graphs resulting from de-
pendence analysis. The auxiliary data structures are represented as
terms in an extended form of the core language. Analyzers and trans-
formers are meta-functions, and verifiers are relations. The result is a
runnable specification, which also serves as a reference implementa-
tion.

Several passes are divided in two parts following a naming con-
vention: transmogrify is the high-level, more convenient definition
that depends on transmogrify*, which is the full low-level definition.
Also, context-free meta-functions often employ a technique to re-
cursively traverse the a෈ෙ without having to restate all forms in the
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language: the last two clauses match (any ...) and any, in order. This
technique comes from the definition of subst in the Redex book.17
We avoid using the unquote (,) form and escaping back to Racket, and
keep as many definitions in the language as possible. The result is a
standalone specification of ෈dl that does not depend on Racket, but
auxiliary definition are necessary, for example, for operations on sets
and graphs (§ A).

3 Abstract Syntax
ผe inෙ඲od෮ce ෈dl’෈ abstract syntax by example. The following
is the ෈dl specification for the bl෈18 cryptographic system:

[(define-type M S)

(define-algorithm (keygen)
(define-output g (random G2))
(define-local x (random ZR))
(define-output pk (↑ g x))
(define-output sk x))

(define-algorithm (sign sk M)
(define-output σ (↑ (H M G1) sk)))

(define-algorithm (verify pk M σ g)
(define-local/precomputed h (H M G1))
(define-output valid? (= (E h pk) (E σ g))))]

The abstract syntax is represented by S-expressions, which are the
results of parsing concrete syntax written by a cryptographer. The
concrete syntax is more convenient for humans to write, because it
has features including infix operators, for example. Both the concrete
syntax and the corresponding parser are future work (§ 14).

A scheme in ෈dl is an ordered series of definitions (enclosed by
square brackets—[]—in the example above). It is closer to a library
than to a full program, because there are only declarations, and no
actual computations to perform. In bl෈, the first declaration is define-
type, which introduces the name M (message) with type S (string). In
general, ෈dl infers the types of expressions and variables, but there
is information which comes from the outside world, for example, a
message to sign, and it is mandatory to annotate its type. These are
the only type annotations required in ෈dl.

The next definition is define-algorithm, which defines an algorithm
that is part of the cryptographic scheme. The name of this first algo-
rithm is keygen (key generation), and it has no inputs. The algorithm
specification is a series of definitions, which are either define-local
or define-output. The difference between the two is scope: variables
defined with define-local are only in scope for the subsequent declara-
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tions in the same algorithm; and variables defined with define-output,
besides being in scope for the subsequent declarations in the same al-
gorithm, are also available as potential inputs for the algorithms that
follow.

After the definition keyword (define-local or define-output), there
is the name of the defined variable, for example, g. Finally, there is
the body of the definition, an expression for how to compute the vari-
able. In the declarations for keygen we find expressions involving the
primitives random and ↑. These primitives come with ෈dl and cover
operations relevant to pairing-based encryption including hashing,
arithmetic over group elements, bilinear maps and so forth. We treat
these primitives as black boxes in ෈dl, and code generators expect
libraries to provide them (§ 13). In our example, random draws a ran-
dom element (from a uniform distribution) of the given type, G2 and
ZR; and ↑ means exponentiation.

Variables in ෈dl are immutable, following the mathematical speci-
fications generally found on papers. Also, their names must be unique
throughout all algorithms in the scheme, a condition which is verified
by the well-formedness checker (§ 5). An algorithm might have any
number of outputs (define-output). The variable identifiers can in-
clude punctuation (for example, valid?), Greek letters (σ) and more.19

The second algorithm in bl෈ is sign, which has sk (secret key) and
M (message) as inputs. ෈dl verifies the origin of the data coming
in as inputs to an algorithm: sk is in scope because it is part of the
output of a previous algorithm (keygen); and M comes from the out-
side world and was introduced by define-type. The definition of σ in
sign is example of nested expressions in ෈dl, because the base of the
exponentiation is (H M G1)—where H is a primitive for hashing the
given value (M) into an element of the given type (G1). Operations in-
cluding random and H might return values of various types, but these
types are explicit on the specification, this allows for a complete type
inferencer (§ 6).

The final algorithm in bl෈, verify, includes a variation on define-
local called define-local/precomputed. This is a hint to the code gen-
erator, which treats precomputed variables differently and promotes
sharing to save computation. Also, the definition of valid? includes
two new primitives: E is for bilinear maps20 and = is mathematical
equality. Operators including = and ↑ are overloaded and work over
different types, for example, integers and group elements.

ෙhe ෈econd eลamඝle of a cryptographic system specified in ෈dl
is cl21:
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[(define-type M ZR)

(define-algorithm (setup)
(define-output g (random G1)))

(define-algorithm (keygen g)
(define-local x (random ZR))
(define-local y (random ZR))
(define-local X (↑ g x))
(define-local Y (↑ g y))
(define-output/composite pk (X Y))
(define-output/composite sk (x y)))

(define-algorithm (sign sk M)
(define-local a (random G2))
(define-local b (↑ a y))
(define-local c (↑ a (+ x (× M x y))))
(define-output/composite σ (a b c)))

(define-algorithm (verify pk M σ g)
(define-output valid?

(and (= (E Y a) (E g b))
(= (× (E X a) (↑ (E X b) M)) (E g c)))))]

The messages in cl are not strings (S), but elements of the ring
of integers modulo 𝑟 (ZR). And the specification of cl uses more
primitives: and, × and +. These have the intuitive interpretation over
booleans and integers.

More importantly, cl includes a new form of binding construct:
define-output/composite. This defines an identifier by composing
other identifiers, for example, pk (public key) is the composition of
X and Y. When verify receives pk as input, the variables X and Y are in
scope. In general, compositions can be part of other compositions,
and all the composed identifiers become available when the com-
posite binding is input to an algorithm. Intuitively, the composite
bindings are records (or tuples) indexed by name, and these names
become available without explicit projection.

ෙhe f෮ll g඲amma඲ for ෈dl’s abstract syntax is the following:22



෈dl: a d෈l fo඲ c඲ฬඝෙog඲aඝhic ෈cheme෈ 9

τ ::= S | I | B | ZR | G1 | G2 | GT | (L τ)
s ::= [dt ... da ...]
dt ::= (define-type x τ)
da ::= (define-algorithm (x x/τ ...) de ...)
de ::= (dk x/τ e) | (define-output/composite x (x/τ ...))
dk ::= define-local | define-local/precomputed | define-output
e ::= v | x | o
v ::= string | integer | boolean
o ::= (H e H/τ) | (random random/τ) | (init init/τ) | (op1 e) | (op2 e e) | (opn e e e ...) | (opl x e e e)

H/τ ::= G1 | G2 | ZR
random/τ ::= S | I | B | ZR | G1 | G2 | GT

init/τ ::= G1 | G2 | GT | ZR
op1 ::= - | not | map
op2 ::= E | ceillog | @ | @/I
opn ::= = | + | - | × | ÷ | ↑ | and | or | ·
opl ::= list | ∏ | ∑
x/τ ::= x | [x : τ]
x ::= variable-not-otherwise-mentioned
p ::= ([x ↦ pv] ...)
pv ::= string | integer | boolean | variable | (pv ...)

We start with the grammar for types (τ): strings (S), integers (I),
booleans (B), integers modulo 𝑟 (ZR), group elements (G1, G2 and
GT), and lists (for example, lists of integers (L I)). The top-level forms
in ෈dl are schemes (s), which are ordered sequences of definitions.
Top-level definitions can be either types annotations for external data
(dt) or algorithms (da). These definitions cannot be intertwined, all
dts must appear before the first da.

The definitions of algorithms expect their name (x) and a sequence
of inputs (x/τ). The inputs are optionally annotated with a type ([x
: τ]), in which case the type checker verifies the annotation agains
the inferred type (§ 6). The body of algorithm definitions are or-
dered sequences of expression definitions (de). They come in two
types: (dk x/τ e) and (define-output/composite x (x/τ ...)). The former is
a regular variable definition, it starts with a definition keyword (dk),
followed by a name with an optional type annotation (x/τ) and finally
an expression (e). The definition keywords (dk) determine scope and
inform the code generator of precomputed values. The other kind of
expression definition (de) defines a composite binding, which behaves
like a name-indexed tuple, as covered above. The parts that compose
a binding of this form must be immediate identifiers with optional
type annotations (x/τ), and arbitrary expressions are disallowed at
this position.

Expressions (e) might be either literal value (v), variable refer-
ences (x) or operations (o). Literal values in ෈dl are strings, integers
and booleans. Variable references (x) are any name that does not
appear elsewhere in the grammar. And operations (o) are the prim-
itives in the language. The project’s initial focus is on pairing-based
encryption, so the primitives are bilinear maps, arithmetic on group
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elements and so forth. But the set of primitives can be extended to
other applications, and we anticipate either augmenting this grammar
or designing a plugin mechanism that allow users to define their own
primitives (§ 14). The following is a brief description of the primi-
tives currently supported:

• H: Hashing of the result of e in the domain of H/τ. Not all types τ
are allowed, and H/τ is the permitted subset.

• random: Draw a random element from the domain random/τ,
which is also a subset of τ.

• init: Return an initial element from the domain init/τ, which is
another subset of τ.

• - (unary), not, ceillog, =, +, - (binary), ×, ÷, ↑, and, or, ·: The intu-
itive interpretations of the arithmetic and boolean operators. - can
be unary or binary. ↑ is exponentiation, and · is string concatena-
tion. Mathematical operators are overloaded and work over differ-
ent types of numbers, for example, integers and group elements.
Equality = works over any operands of the same type. Operators of
the opn non-terminal (for example, +) are variadic and accept two
or more operands.

• map: Map strings to integers. To be used in conjunction with @/I,
see below.

• E:23 Bilinear maps. The inputs are either elements of G1 in the
symmetric setting or one element of G1 and one element of G2 in
the asymmetric setting (§ 7).

• @: List dereference. The inputs are, in order, the list and the inte-
ger index.

• @/I: Index into an integer. The inputs are, in order, the integer
subject and the integer index. The result is also an integer. To be
used in conjunction with map, see above.

• list: Create a list, with index x ranging from the result of the first
given expression (e) to the result of the second given expression
(inclusive), by repeatedly evaluating the third given expression.
The index x is available in the subject expression (the last). In-
tuitively, this is similar to list comprehensions in Python, or to
list unfolding in functional programming languages. Lists are im-
mutable data structures.

• ∏ and ∑: Product and summation. The rules for indexing are the
same as for list, see above. Intuitively, this is similar to list folding
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Algorithms Locals
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Identifiers

(reducing) in functional programming languages, in which the
subject is the list of indices.

ෙool෈ in ෙhe ෈dl ecosystem might need extra parameters besides
the scheme definition, for example, AutoBatch optimizes the batch
signature verification for a specific batch size. These parameters (p)
are maps of names to values (pv), which can be strings, integers,
booleans, symbols (variable), and lists of values.

ෙhe ෈ඝace of identifiers in ෈dl is partitioned:

• Reserved: Identifiers that appear in the grammar, for example,
random and ↑.

• Indices: Variables that range over an interval in operations us-
ing opl. While in general variable names in ෈dl must be unique
throughout the entire scheme definition, indices need no be unique.
When nesting operations using opl, indices follow the rules of lexi-
cal (static) scoping.

• Names: Identifiers for algorithms (define-algorithm), general vari-
able definitions (dk) and composites (define-output/composite).
Names in ෈dl must be unique throughout the entire scheme defi-
nition.

• Algorithms, locals and outputs: Subsets of names that identify algo-
rithms, locals and outputs, respectively.

• Composites: Subset of names for bindings which aggregate other
bindings (define-output/composite).

4 Syntactic Analyses
ผe inෙ඲od෮ce a series of syntactic analyses that extract informa-
tion from cryptographic schemes with the purpose of simplifying the
rest of the ෈dl ecosystem.

ผe ෈ෙa඲ෙ by defining a language by extension of ෈dl, which con-
tains forms for lists, sets, (multi-)maps and graphs:
X ::= (x ...)
g ::= ([x ↦ X] ...)

The X nonterminal refers to both lists and sets, and g refers to
(multi-)maps and graphs, depending on how they are used. See § A
for a collection of auxiliary operations over these data structures,
including �,⊆, and so forth for sets and transitive-closure for graphs.
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We choose to keep these data structures and their operations in
the language, so that the syntactical reasoning used in ෈dl applies to
them as well. The system is constructive and self-contained.

ෙhe type-annotations meta-function extracts type annotations (define-
type) from cryptographic schemes:
type-annotations : s → ([x ↦ τ] ...)

type-annotations⟦[(define-type x τ) ... da ...]⟧  = ([x ↦ τ] ...)

The result of applying type-annotations to bl෈ (§ 3) is the follow-
ing:

((M ↦ S))

And the result of applying type-annotations to cl (§ 3) is the fol-
lowing:

((M ↦ ZR))

ෙhe definitions/expressions meta-function extracts all regular variable
definitions (dk) from cryptographic schemes, indexed by their names:
de�nitions/expressions : _ → ([x ↦ e] ...)

de�nitions/expressions⟦(dk x/τ e)⟧  = ([x/τ->x⟦x/τ⟧ ↦ e])

de�nitions/expressions⟦(any ...)⟧  = ∪⟦de�nitions/expressions⟦any⟧, ...⟧
de�nitions/expressions⟦any⟧  = ()

The result of applying definitions/expressions to bl෈ (§ 3) is the
following:

((g ↦ (random G2))
(x ↦ (random ZR))
(pk ↦ (↑ g x))
(sk ↦ x)
(σ ↦ (↑ (H M G1) sk))
(h ↦ (H M G1))
(valid? ↦ (= (E h pk) (E σ g))))

And the result of applying definitions/expressions to cl (§ 3) is the
following:

((g ↦ (random G1))
(x ↦ (random ZR))
(y ↦ (random ZR))
(X ↦ (↑ g x))
(Y ↦ (↑ g y))
(a ↦ (random G2))
(b ↦ (↑ a y))
(c ↦ (↑ a (+ x (× M x y))))
(valid? ↦ (and (= (E Y a) (E g b)) (= (× (E X a) (↑ (E X b) M)) (E g c)))))

ෙhe definitions/composites meta-function extracts all composite bind-
ing definitions (define-output/composite) from cryptographic schemes,
indexed by their names:
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24 BLS does not include composite bind-
ings.

de�nitions/composites : _ → g

de�nitions/composites⟦(define-output/composite x (x/τ ...))⟧  = ([x ↦ (x/τ->x⟦x/τ⟧ ...)])

de�nitions/composites⟦(any ...)⟧  = ∪⟦de�nitions/composites⟦any⟧, ...⟧
de�nitions/composites⟦any⟧  = ()

The result of applying definitions/composites to bl෈ (§ 3) is the
following:24

()

And the result of applying definitions/composites to cl (§ 3) is the
following:

((pk ↦ (X Y)) (sk ↦ (x y)) (σ ↦ (a b c)))

ෙhe expressions meta-function extracts all expressions from crypto-
graphic schemes, even those nested in other expressions:
expressions : s → (e ...)

expressions⟦s⟧  = expressions*⟦ranges⟦de�nitions/expressions⟦s⟧⟧⟧
expressions* : _ → (e ...)

expressions*⟦()⟧  = ()

expressions*⟦e⟧  = ∪⟦(e), expressions*⟦any⟧, ...⟧
 where (any ...) = e

expressions*⟦e⟧  = (e)

expressions*⟦(any ...)⟧  = ∪⟦expressions*⟦any⟧, ...⟧
expressions*⟦any⟧  = ()

The result of applying expressions to bl෈ (§ 3) is the following:
((random G2)
(random ZR)
(↑ g x)
g
x
(↑ (H M G1) sk)
(H M G1)
M
sk
(= (E h pk) (E σ g))
(E h pk)
h
pk
(E σ g)
σ)

And the result of applying expressions to cl (§ 3) is the following:
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25 BLS does not include additions or
subtractions.

((random G1)
(random ZR)
(↑ g x)
g
x
(↑ g y)
y
(random G2)
(↑ a y)
a
(↑ a (+ x (× M x y)))
(+ x (× M x y))
(× M x y)
M
(and (= (E Y a) (E g b)) (= (× (E X a) (↑ (E X b) M)) (E g c)))
(= (E Y a) (E g b))
(E Y a)
Y
(E g b)
b
(= (× (E X a) (↑ (E X b) M)) (E g c))
(× (E X a) (↑ (E X b) M))
(E X a)
X
(↑ (E X b) M)
(E X b)
(E g c)
c)

ෙhe additions+subtractions meta-function extracts all expressions
which are additions or subtractions (+, -, ∑) from cryptographic
schemes, even those nested in other expressions:
additions+subtractions : s → (e ...)

additions+subtractions⟦s⟧  = additions+subtractions*⟦expressions⟦s⟧⟧
additions+subtractions* : (e ...) → (e ...)

additions+subtractions*⟦()⟧  = ()

additions+subtractions*⟦(e1 e3 ...)⟧  = ∪⟦(e1), additions+subtractions*⟦(e3 ...)⟧⟧
 where e1 = (+ e2 ...)

additions+subtractions*⟦(e1 e3 ...)⟧  = ∪⟦(e1), additions+subtractions*⟦(e3 ...)⟧⟧
 where e1 = (- e2 ...)

additions+subtractions*⟦(e1 e3 ...)⟧  = ∪⟦(e1), additions+subtractions*⟦(e3 ...)⟧⟧
 where e1 = (∑ any ...)

additions+subtractions*⟦(any e3 ...)⟧  = additions+subtractions*⟦(e3 ...)⟧

The result of applying additions+subtractions to bl෈ (§ 3) is the
following:25

()

The result of applying additions+subtractions to cl (§ 3) is the
following:

((+ x (× M x y)))
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26 BLS does not include multiplications or
divisions.

27 Neither BLS nor CL include type asser-
tions.

And the result of applying additions+subtractions to the artificial
cryptographic scheme [(define-algorithm (keygen) (define-output sk (∑ z 1
10 2)))] is the following:

((∑ z 1 10 2))

ෙhe multiplications+divisions meta-function extracts all expressions
which are multiplications or divisions (×, ÷, ∏) from cryptographic
schemes, even those nested in other expressions:
multiplications+divisions : s → (e ...)

multiplications+divisions⟦s⟧  = multiplications+divisions*⟦expressions⟦s⟧⟧
multiplications+divisions* : (e ...) → (e ...)

multiplications+divisions*⟦()⟧  = ()

multiplications+divisions*⟦(e1 e3 ...)⟧  = ∪⟦(e1), multiplications+divisions*⟦(e3 ...)⟧⟧
 where e1 = (× e2 ...)

multiplications+divisions*⟦(e1 e3 ...)⟧  = ∪⟦(e1), multiplications+divisions*⟦(e3 ...)⟧⟧
 where e1 = (÷ e2 ...)

multiplications+divisions*⟦(e1 e3 ...)⟧  = ∪⟦(e1), multiplications+divisions*⟦(e3 ...)⟧⟧
 where e1 = (∏ any ...)

multiplications+divisions*⟦(any e3 ...)⟧  = multiplications+divisions*⟦(e3 ...)⟧

The result of applying multiplications+divisions to bl෈ (§ 3) is the
following:26

()

The result of applying multiplications+divisions to cl (§ 3) is the
following:

((× M x y) (× (E X a) (↑ (E X b) M)))

And the result of applying multiplications+divisions to the artificial
cryptographic scheme [(define-algorithm (keygen) (define-output sk (∏ z 1
10 2)))] is the following:

((∏ z 1 10 2))

ෙhe type-assertions meta-function extracts all type annotations (asser-
tions for the type checker, § 6) from cryptographic schemes:
type-assertions : _ → ([x ↦ τ] ...)

type-assertions⟦[x : τ]⟧  = ([x ↦ τ])

type-assertions⟦(any ...)⟧  = ∪⟦type-assertions⟦any⟧, ...⟧
type-assertions⟦any⟧  = ()

The results of applying type-assertions to bl෈ and cl (§ 3) are the
following:27

()

()

And the result of applying multiplications+divisions to the artifi-
cial cryptographic scheme [(define-algorithm (keygen [x : B]))] is the
following:
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28 The inputs/da auxiliary meta-function is
analogous, at the level of algorithms.

29 The locals/da auxiliary meta-function is
analogous, at the level of algorithms.

30 The outputs/da auxiliary meta-function is
analogous, at the level of algorithms.

((x ↦ B))

ෙhe inputs/s meta-function extracts all inputs from cryptographic
schemes, indexed by algorithm:28
inputs/s : s → g

inputs/s⟦[dt ... da ...]⟧  = ([x ↦ inputs/da⟦da⟧] ...)

 where da = (define-algorithm (x x/τ ...) de ...)

inputs/da : da → X

inputs/da⟦(define-algorithm (x x/τ ...) de ...)⟧  = (x/τ->x⟦x/τ⟧ ...)
The result of applying inputs/s to bl෈ (§ 3) is the following:
((keygen ↦ ()) (sign ↦ (sk M)) (verify ↦ (pk M σ g)))

And the result of applying inputs/s to cl (§ 3) is the following:
((setup ↦ ()) (keygen ↦ (g)) (sign ↦ (sk M)) (verify ↦ (pk M σ g)))

ෙhe locals/s meta-function extracts all locals (define-local and define-
local/precomputed) from cryptographic schemes, indexed by algo-
rithm:29
locals/s : s → g

locals/s⟦[dt ... da ...]⟧  = ([x ↦ locals/da⟦da⟧] ...)

 where da = (define-algorithm (x x/τ ...) de ...)

locals/da : da → X

locals/da⟦(define-algorithm (x x/τi ...)
(define-local x/τo e) de ...)⟧

 = ∪⟦(x/τ->x⟦x/τo⟧),

locals/da⟦(define-algorithm (x x/τi ...) de ...)⟧⟧

locals/da⟦(define-algorithm (x x/τi ...)
(define-local/precomputed x/τo e) de ...)⟧

 = ∪⟦(x/τ->x⟦x/τo⟧),

locals/da⟦(define-algorithm (x x/τi ...) de ...)⟧⟧

locals/da⟦(define-algorithm (x x/τi ...) de1 de2 ...)⟧  = locals/da⟦(define-algorithm (x x/τi ...) de2 ...)⟧

locals/da⟦(define-algorithm (x x/τ ...))⟧  = ()

The result of applying locals/s to bl෈ (§ 3) is the following:
((keygen ↦ (x)) (sign ↦ ()) (verify ↦ (h)))

And the result of applying locals/s to cl (§ 3) is the following:
((setup ↦ ()) (keygen ↦ (x y X Y)) (sign ↦ (a b c)) (verify ↦ ()))

ෙhe outputs/s meta-function extracts all outputs (define-output and
define-output/composite) from cryptographic schemes, indexed by
algorithm:30
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31 Repeating names is not allowed, and
names is used to detect this issue (§ 5).

32 The algorithmsmeta-function does
not include repeated names, because it
should only be applied to well-formed
cryptographic schemes (§ 5).

outputs/s : s → g

outputs/s⟦[dt ... da ...]⟧  = ([x ↦ outputs/da⟦da⟧] ...)

 where da = (define-algorithm (x x/τ ...) de ...)

outputs/da : da → X

outputs/da⟦(define-algorithm (x x/τi ...)
(define-output x/τo e) de ...)⟧

 = ∪⟦(x/τ->x⟦x/τo⟧),

outputs/da⟦(define-algorithm (x x/τi ...) de ...)⟧⟧

outputs/da⟦(define-algorithm (xi x/τi ...)
(define-output/composite xc (x/τc ...)) de ...)⟧

 = ∪⟦(xc),
outputs/da⟦(define-algorithm (xi x/τi ...) de ...)⟧⟧

outputs/da⟦(define-algorithm (x x/τi ...) de1 de2 ...)⟧  = outputs/da⟦(define-algorithm (x x/τi ...) de2 ...)⟧

outputs/da⟦(define-algorithm (x x/τ ...))⟧  = ()

The result of applying outputs/s to bl෈ (§ 3) is the following:
((keygen ↦ (g pk sk)) (sign ↦ (σ)) (verify ↦ (valid?)))

And the result of applying outputs/s to cl (§ 3) is the following:
((setup ↦ (g)) (keygen ↦ (pk sk)) (sign ↦ (σ)) (verify ↦ (valid?)))

ෙhe names meta-function extracts all names (algorithms, variables
and composite bindings) from cryptographic schemes, including repe-
tition:31
names : _ → X

names⟦[dt ... da ...]⟧  = ∪*⟦names⟦dt⟧, ..., names⟦da⟧, ...⟧
names⟦(define-type x τ)⟧  = names⟦x⟧
names⟦(define-algorithm (x x/τ ...) de ...)⟧  = ∪*⟦(x), names⟦de⟧, ...⟧
names⟦(dk x/τ e)⟧  = names⟦x/τ⟧
names⟦(define-output/composite x (x/τ ...))⟧  = names⟦x⟧
names⟦x⟧  = (x)

names⟦[x : τ]⟧  = names⟦x⟧
The result of applying names to bl෈ (§ 3) is the following:
(M keygen g x pk sk sign σ verify h valid?)

The result of applying names to cl (§ 3) is the following:
(M setup g keygen x y X Y pk sk sign a b c σ verify valid?)

And the result of applying names to the artificial cryptographic
scheme [(define-algorithm (a) (define-local a 1))] is the following:

(a a)

ෙhe algorithms meta-function extracts all algorithm names (define-
algorithm) from cryptographic schemes:32
algorithms : s → X

algorithms⟦[dt ... (define-algorithm (x x/τ ...) de ...) ...]⟧  = (x ...)

The result of applying algorithms to bl෈ (§ 3) is the following:
(keygen sign verify)

And the result of applying algorithms to cl (§ 3) is the following:
(setup keygen sign verify)
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33 Neither BLS nor CL include operations
using opl.

ෙhe composites meta-function extracts all composite bindings (define-
output/composite) from cryptographic schemes:
composites : _ → X

composites⟦(define-output/composite x (x/τ ...))⟧  = (x)

composites⟦(any ...)⟧  = ∪⟦composites⟦any⟧, ...⟧
composites⟦any⟧  = ()

The result of applying composites to bl෈ (§ 3) is the following:
()

And the result of applying composites to cl (§ 3) is the following:
(pk sk σ)

ෙhe indices meta-function extracts all indices (introduced by opera-
tions using opl) from cryptographic schemes:
indices : _ → X

indices⟦(opl x e1 e2 e3)⟧  = ∪⟦(x), indices⟦e1⟧, indices⟦e2⟧, indices⟦e3⟧⟧
indices⟦(any ...)⟧  = ∪⟦indices⟦any⟧, ...⟧
indices⟦any⟧  = ()

The result of applying indices to bl෈ and cl (§ 3) is the follow-
ing:33

()

()

And the result of applying indices to the artificial cryptographic
scheme [(define-algorithm (keygen) (define-output sk (∑ x 1 10 20)))] is the
following:

(x)

ෙhe free-indices meta-function extracts all indices (introduced by
operations using opl) which are free (not bound) in an expression:
free-indices : _ Xindices → X

free-indices⟦x, Xindices⟧  = (x)

 where ∈⟦x, Xindices⟧

free-indices⟦x, Xindices⟧  = ()

free-indices⟦(opl x e1 e2 e3), Xindices⟧  = ∪⟦free-indices⟦e1, Xindices⟧, free-indices⟦e2, Xindices⟧,
set--⟦free-indices⟦e3, Xindices⟧, (x)⟧⟧

free-indices⟦(any ...), Xindices⟧  = ∪⟦free-indices⟦any, Xindices⟧, ...⟧

free-indices⟦any, Xindices⟧  = ()

The result of applying free-indices to the expression (+ z x) when the
set of indices is (z) is the following:

(z)

The result of applying free-indices to the expression (list x 1 10 x)
when the set of indices is (x) is the following:

()
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34 If variables were referenced before
their definition, then the meaning of the
cryptographic scheme would be open
to interpretation, up to the meaning of
those variables. In SDL, we only consider
schemes which do not include these
variables, so are said to be closed.

The result of applying free-indices to the expression (+ (∏ z 1 η z) x)
when the set of indices is (z) is the following:

()

And the result of applying free-indices to the expression (+ (∏ z z z z)
x) when the set of indices is (z) is the following:

(z)

5 Well-Formedness Condition
ෙhe g඲amma඲ fo඲ ෈dl (§ 3) allows for invalid cryptographic
schemes, for example, a variable may be referenced before it is de-
fined, or the a name may be reused. These are context-sensitive in-
variants, and checking for them is beyond the reach of context-free
grammar we used to specify the abstract syntax. We introduce in
this section a well-formedness checker that verifies the proper use of
identifiers; more sophisticated passes, including a type system and
semantic analyses are covered in the next sections.

a c඲ฬඝෙog඲aඝhic ෈cheme is well-formed if the following condi-
tions are satisfied:

• All names are unique.
• The sets of names and indices are disjunct.
• All variables are defined before they are referenced.34

These conditions are checked in order, and each step assumes the
previous was successful. Formally, the conditions are expressed by
the following relations:
well-formed?*⟦s, names⟦s⟧, indices⟦s⟧⟧

well-formed?⟦s⟧
unique?⟦Xnames⟧ disjunct?⟦Xnames, Xindices⟧ closed?⟦s⟧

well-formed?*⟦s, Xnames, Xindices⟧

The well-formed? relation is defined for schemes s and relies on
auxiliary meta-functions to extract the relevant information from
them: names and indices (§ 4). Then well-formed? relies on an aux-
iliary relation well-formed?*, which verifies each of the invariants
mentioned above via more auxiliary relations: unique? and disjunct?,
which are just operations on lists and sets (§ A); and closed?, which is
defined as follows:
closed?*⟦s, (), (), transitive-closure⟦de�nitions/composites⟦s⟧⟧⟧

closed?⟦s⟧
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closed?*⟦[dt ... da ...],
∪⟦Xnamespace/scheme, (x)⟧, (), gdefinitions/composites/transitive-closure⟧

closed?*⟦[(define-type x τ) dt ... da ...],
Xnamespace/scheme, (), gdefinitions/composites/transitive-closure⟧

⊆⟦Xinputs, Xnamespace/scheme⟧

closed?*⟦[(define-algorithm (x) de ...) da ...],
Xnamespace/scheme, Xnamespace/algorithm, gdefinitions/composites/transitive-closure⟧

Xinputs = (any1 any2 ...)

Xnamespace/algorithm = ∪⟦(xinput ...), lookup*⟦xinput, gdefinitions/composites/transitive-closure, ()⟧, ...⟧

(xinput ...) = Xinputs

Xinputs = (x/τ->x⟦x/τ⟧ ...)

closed?*⟦[(define-algorithm (x x/τ ...) de ...) da ...],
Xnamespace/scheme, (), gdefinitions/composites/transitive-closure⟧

closed?*/e⟦e, Xnamespace/algorithm⟧

closed?*⟦[(define-algorithm (x) de ...) da ...],

Xnamespace/scheme, ∪⟦Xnamespace/algorithm, (x/τ->x⟦x/τ⟧)⟧,
gdefinitions/composites/transitive-closure⟧

closed?*⟦[(define-algorithm (x) (define-local x/τ e) de ...) da ...],
Xnamespace/scheme, Xnamespace/algorithm, gdefinitions/composites/transitive-closure⟧

closed?*/e⟦e, Xnamespace/algorithm⟧

closed?*⟦[(define-algorithm (x) de ...) da ...],

Xnamespace/scheme, ∪⟦Xnamespace/algorithm, (x/τ->x⟦x/τ⟧)⟧,
gdefinitions/composites/transitive-closure⟧

closed?*⟦[(define-algorithm (x) (define-local/precomputed x/τ e) de ...) da ...],
Xnamespace/scheme, Xnamespace/algorithm, gdefinitions/composites/transitive-closure⟧



෈dl: a d෈l fo඲ c඲ฬඝෙog඲aඝhic ෈cheme෈ 21

closed?*/e⟦e, Xnamespace/algorithm⟧

closed?*⟦[(define-algorithm (x) de ...) da ...],

∪⟦Xnamespace/scheme, (x/τ->x⟦x/τ⟧)⟧, ∪⟦Xnamespace/algorithm, (x/τ->x⟦x/τ⟧)⟧,
gdefinitions/composites/transitive-closure⟧

closed?*⟦[(define-algorithm (x) (define-output x/τ e) de ...) da ...],
Xnamespace/scheme, Xnamespace/algorithm, gdefinitions/composites/transitive-closure⟧

closed?*⟦[(define-algorithm (xalgorithm) de ...) da ...],
∪⟦Xnamespace/scheme, (xcomposite)⟧, ∪⟦Xnamespace/algorithm, (xcomposite)⟧,
gdefinitions/composites/transitive-closure⟧

closed?*⟦[(define-algorithm (xalgorithm)
(define-output/composite xcomposite (x/τ ...)) de ...) da ...],

Xnamespace/scheme, Xnamespace/algorithm, gdefinitions/composites/transitive-closure⟧

closed?*⟦[da ...], Xnamespace/scheme, (), gdefinitions/composites/transitive-closure⟧

closed?*⟦[(define-algorithm (x)) da ...],
Xnamespace/scheme, Xnamespace/algorithm, gdefinitions/composites/transitive-closure⟧

closed?*⟦[], Xnamespace/scheme, (), gdefinitions/composites/transitive-closure⟧
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closed?*/e⟦v, Xnamespace/algorithm⟧

∈⟦x, Xnamespace/algorithm⟧

closed?*/e⟦x, Xnamespace/algorithm⟧

closed?*/e⟦e, Xnamespace/algorithm⟧

closed?*/e⟦(H e H/τ), Xnamespace/algorithm⟧

closed?*/e⟦(random random/τ), Xnamespace/algorithm⟧

closed?*/e⟦(init init/τ), Xnamespace/algorithm⟧

closed?*/e⟦e, Xnamespace/algorithm⟧

closed?*/e⟦(op1 e), Xnamespace/algorithm⟧

closed?*/e⟦e1, Xnamespace/algorithm⟧ closed?*/e⟦e2, Xnamespace/algorithm⟧

closed?*/e⟦(op2 e1 e2), Xnamespace/algorithm⟧

closed?*/e⟦e, Xnamespace/algorithm⟧ ...

closed?*/e⟦(opn e ...), Xnamespace/algorithm⟧

closed?*/e⟦e1, Xnamespace/algorithm⟧ closed?*/e⟦e2, Xnamespace/algorithm⟧ closed?*/e⟦e3, ∪⟦Xnamespace/algorithm, (x)⟧⟧

closed?*/e⟦(opl x e1 e2 e3), Xnamespace/algorithm⟧

The closed? relation depends on auxiliary meta-functions to extract
information from the given scheme: definitions/composites (§ 4) and
transitive-closure (§ A). We need the transitive closure of the graph of
composite binding definitions because composite bindings might be
part of other composite definitions. And, when one of them is input
to an algorithm, all these bindings become available. Then closed?
relation depends on the closed?* auxiliary relation.

The closed?* relation traverses the cryptographic scheme while
carrying along two namespaces to determine scope: one for the entire
scheme, and one local to an algorithm. The namespace for the entire
scheme contains the variables bound by type declarations (define-
type) and by outputs (define-output and define-output/composite) of
preceding algorithms. This namespace is checked against algorithm
inputs, data in a cryptographic system must either come from the
outside world (in which case its type has been explicitly declared),
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or it must be computed by the scheme itself (in which case it is the
output of an algorithm and its type can be inferred; see § 6).

The other namespace is local to an algorithm. It is renewed when
entering each algorithm on the traversal, and includes only the cur-
rent algorithm inputs (along with their parts in the case of composite
bindings) and accumulated definitions (either local or output). The
expression (e) in each definition also has its scope checked with the
auxiliary relation closed?*/e. Expressions using opl operators augment
the namespace with the index they introduce.

6 Type System
෈dl’෈ ෙฬඝe ෈ฬ෈ෙem finds issues including incorrect uses of prim-
itives, for example, adding an integer directly to a group element.
Also, it checks the type annotations that cryptographers may add to
definitions and algorithms inputs, either to improve their readability
or to investigate bugs. The type system is divided in two parts: a type
inferencer and a type checker. This allows transformers to rewrite
schemes with knowledge of inferred types before they are checked.
See § 11 for an example; it is a pass that rewrites schemes using ad-
ditive notation for operations on group elements into schemes using
multiplicative notation, which requires knowledge of types to find
the additions and subtractions to convert. The advantage of having
inference and checking as separate passes, and including transforma-
tion passes between them, is that the type checker can be more strict
because the schemes have been normalized.

In this section we do not explore the type system’s metatheory. We
do not formally prove its soundness, for example. This would require
a more rigorous notion of semantics and goes beyond the scope of
this qualifying project (§ 14).

The type system requires an extended language:
τ ::= .... | ☠
Γ ::= ([x ↦ τ] ...)

G/τ ::= G1 | G2 | GT
+/-/τ ::= I | ZR
×/÷/τ ::= I | ZR | G/τ
↑/b/τ ::= I | ZR | G/τ
↑/e/τ ::= I | ZR

The first extension is on the notion of types itself (τ). We include
the type ☠, which the type inferencer assigns to immediately inconsis-
tent expressions and the type checker always considers a failure. We
also introduce a typing environment (Γ), which maps identifiers (x)
to their corresponding types (τ). The result of the type inferencer is a
typing environment representing typing assumptions. These assump-
tions can be used by other passes before the type checking phase,
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35 We assume that the additive notation
for group operations has already been
normalized into multiplicative notation
(§ 11) at the point of checking types against
the +/-/τ nonterminal, which explains the
absence of G/τ.

in particular to normalize schemes (§ 11). Then, the type checker
verifies these assumptions.

The final language extension is a collection of nonterminals */τ,
which represent the types allowed by certain primitive operations.
For example, +/-/τ states that only integers (I) and elements of the
ring of integers modulo 𝑟 (ZR) are allowed in additions or subtrac-
tions.35

ෙhe ෙฬඝe infe඲ence meta-function infer receives as input a
scheme s and returns a typing environment Γ, which represents a
set of assumptions about the types for variables in the scheme:
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infer : s → Γ

infer⟦s⟧  = infer*⟦de�nitions/expressions⟦s⟧,
∪⟦type-annotations⟦s⟧, ([xindices ↦ I] ...), ([xcomposites ↦ ☠] ...)⟧⟧

 where (xindices ...) = indices⟦s⟧, (xcomposites ...) = composites⟦s⟧
infer* : ([x ↦ e] ...) Γ → Γ

infer*⟦([x1 ↦ e1] [x2 ↦ e2] ...), Γ⟧  = infer*⟦([x2 ↦ e2] ...), ∪⟦Γ, ([x1 ↦ infer*/e⟦e1, Γ⟧])⟧⟧

infer*⟦(), Γ⟧  = Γ

infer*/e : e Γ → τ

infer*/e⟦string, Γ⟧  = S

infer*/e⟦integer, Γ⟧  = I

infer*/e⟦boolean, Γ⟧  = B

infer*/e⟦x, Γ⟧  = lookup⟦x, Γ⟧

infer*/e⟦(H e H/τ), Γ⟧  = H/τ

infer*/e⟦(random random/τ), Γ⟧  = random/τ

infer*/e⟦(init init/τ), Γ⟧  = init/τ

infer*/e⟦(- e), Γ⟧  = infer*/e⟦e, Γ⟧

infer*/e⟦(not e), Γ⟧  = B

infer*/e⟦(map e), Γ⟧  = I

infer*/e⟦(E e1 e2), Γ⟧  = GT

infer*/e⟦(ceillog e1 e2), Γ⟧  = I

infer*/e⟦(@ e1 e2), Γ⟧  = τ

 where (L τ) = infer*/e⟦e1, Γ⟧
infer*/e⟦(@ e1 e2), Γ⟧  = ☠

infer*/e⟦(@/I e1 e2), Γ⟧  = I

infer*/e⟦(= e1 e2 ...), Γ⟧  = B

infer*/e⟦(+ e1 e2 ...), Γ⟧  = infer*/e⟦e1, Γ⟧
infer*/e⟦(- e1 e2 ...), Γ⟧  = infer*/e⟦e1, Γ⟧
infer*/e⟦(× e1 e2 ...), Γ⟧  = infer*/e⟦e1, Γ⟧
infer*/e⟦(÷ e1 e2 ...), Γ⟧  = infer*/e⟦e1, Γ⟧
infer*/e⟦(↑ e1 e2 ...), Γ⟧  = infer*/e⟦e1, Γ⟧
infer*/e⟦(and e ...), Γ⟧  = B

infer*/e⟦(or e ...), Γ⟧  = B

infer*/e⟦(· e ...), Γ⟧  = S

infer*/e⟦(list x e1 e2 e3), Γ⟧  = (L infer*/e⟦e3, Γ⟧)
infer*/e⟦(∏ x e1 e2 e3), Γ⟧  = infer*/e⟦e3, Γ⟧
infer*/e⟦(∑ x e1 e2 e3), Γ⟧  = infer*/e⟦e3, Γ⟧

The main meta-function infer deconstructs the scheme by using def-
initions/expressions (§ 4), and collects the type assumptions provided
by the outside world: type annotations given by the cryptographer;
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all indices, which have type integer (I); and composites, which are
binding constructs that cannot be used in expression contexts, and
therefore have type ☠.

Then, the auxiliary meta-function infer* traverses the list of defi-
nitions in the scheme and calls the auxiliary meta-function infer*/e
for each expression. The intermediary results are accumulated in the
typing environment Γ and are available to subsequent definitions. Fi-
nally, the infer*/e meta-function receives an expression and a typing
environment Γ, and produces a tentative type τ. Whether this type
is correct will be determined by the type checker (see below), but it
can be used for type-aware intermediary passes that only require type
assumptions (§ 11).

The following are the type assumptions determined by the type
inferencer for bl෈:
((M ↦ S) (g ↦ G2) (x ↦ ZR) (pk ↦ G2) (sk ↦ ZR) (σ ↦ G1) (h ↦ G1) (valid? ↦ B))

And the following are the type assumptions determined by the type
inferencer for cl:
((M ↦ ZR)
(pk ↦ ☠)
(sk ↦ ☠)
(σ ↦ ☠)
(g ↦ G1)
(x ↦ ZR)
(y ↦ ZR)
(X ↦ G1)
(Y ↦ G1)
(a ↦ G2)
(b ↦ G2)
(c ↦ G2)
(valid? ↦ B))

ෙhe ෙฬඝe checking relation types-valid? is defined for schemes
s and determines whether the type assumptions from inference are
consistent both with the definitions of the primitive operations and
with the annotations given by the cryptographer:
types-valid?*⟦type-assertions⟦s⟧, expressions⟦s⟧, infer⟦s⟧⟧

types-valid?⟦s⟧
⊆⟦Γassertions, Γinferred_types⟧ types-valid?*/e⟦e, Γinferred_types⟧ ...

types-valid?*⟦Γassertions, (e ...), Γinferred_types⟧
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types-valid?*/e⟦v, Γ⟧

types-valid?*/e⟦x, Γ⟧

types-valid?*/e⟦(H e H/τ), Γ⟧

types-valid?*/e⟦(random random/τ), Γ⟧

types-valid?*/e⟦(init init/τ), Γ⟧

+/-/τ = infer*/e⟦e, Γ⟧

types-valid?*/e⟦(- e), Γ⟧

B = infer*/e⟦e, Γ⟧

types-valid?*/e⟦(not e), Γ⟧

S = infer*/e⟦e, Γ⟧

types-valid?*/e⟦(map e), Γ⟧

G1 = infer*/e⟦e2, Γ⟧ G1 = infer*/e⟦e1, Γ⟧

types-valid?*/e⟦(E e1 e2), Γ⟧

G2 = infer*/e⟦e2, Γ⟧ G1 = infer*/e⟦e1, Γ⟧

types-valid?*/e⟦(E e1 e2), Γ⟧

I = infer*/e⟦e2, Γ⟧ I = infer*/e⟦e1, Γ⟧

types-valid?*/e⟦(ceillog e1 e2), Γ⟧

I = infer*/e⟦e2, Γ⟧ (L τ) = infer*/e⟦e1, Γ⟧

types-valid?*/e⟦(@ e1 e2), Γ⟧

I = infer*/e⟦e2, Γ⟧ I = infer*/e⟦e1, Γ⟧

types-valid?*/e⟦(@/I e1 e2), Γ⟧

all=?⟦(infer*/e⟦e, Γ⟧ ...)⟧

types-valid?*/e⟦(= e ...), Γ⟧

all=?⟦(+/-/τ ...)⟧ (+/-/τ ...) = (infer*/e⟦e, Γ⟧ ...)

types-valid?*/e⟦(+ e ...), Γ⟧

all=?⟦(+/-/τ ...)⟧ (+/-/τ ...) = (infer*/e⟦e, Γ⟧ ...)

types-valid?*/e⟦(- e ...), Γ⟧

all=?⟦(×/÷/τ ...)⟧ (×/÷/τ ...) = (infer*/e⟦e, Γ⟧ ...)

types-valid?*/e⟦(× e ...), Γ⟧

all=?⟦(×/÷/τ ...)⟧ (×/÷/τ ...) = (infer*/e⟦e, Γ⟧ ...)

types-valid?*/e⟦(÷ e ...), Γ⟧

(↑/e/τ ...) = (infer*/e⟦ee, Γ⟧ ...) ↑/b/τ = infer*/e⟦eb, Γ⟧

types-valid?*/e⟦(↑ eb ee ...), Γ⟧

(B ...) = (infer*/e⟦e, Γ⟧ ...)

types-valid?*/e⟦(and e ...), Γ⟧

(B ...) = (infer*/e⟦e, Γ⟧ ...)

types-valid?*/e⟦(or e ...), Γ⟧

types-valid?*/e⟦(· e ...), Γ⟧

I = infer*/e⟦e2, Γ⟧ I = infer*/e⟦e1, Γ⟧ I = infer*/e⟦x, Γ⟧

types-valid?*/e⟦(list x e1 e2 e3), Γ⟧

×/÷/τ = infer*/e⟦e3, Γ⟧ I = infer*/e⟦e2, Γ⟧ I = infer*/e⟦e1, Γ⟧ I = infer*/e⟦x, Γ⟧

types-valid?*/e⟦(∏ x e1 e2 e3), Γ⟧

+/-/τ = infer*/e⟦e3, Γ⟧ I = infer*/e⟦e2, Γ⟧ I = infer*/e⟦e1, Γ⟧ I = infer*/e⟦x, Γ⟧

types-valid?*/e⟦(∑ x e1 e2 e3), Γ⟧

The structure of the type checker types-valid? is similar to the
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36 One SDL use case we contemplate
is automatically converting symmetric
into asymmetric schemes, improving on
AutoGroup+ (§ 14).

37 In summary:
Symmetric (Type-I)
E : G1 G1 → GT
Asymmetric (Type-I I I )
E : G1 G2 → GT
In theory, the order of the inputs in the
asymmetric setting (G1 G2 vs. G2 G1)
is arbitrary—as long as it is consistent
throughout the scheme. In SDL wemake
the simplifying assumption that cryptogra-
phers always write inputs in the order G1
G2.

structure of the type inferencer infer: it extracts information from
the scheme by delegating to other meta-functions, and then calls
auxiliary meta-functions. These auxiliary meta-functions verify that
the type assertions written by the cryptographer in annotations are
consistent with the inferred types (using⊆), and that the primitive
operations are used properly. The types-valid?*/e relation does not
need to recursively call itself with subexpressions because the expres-
sions meta-function (§ 4) collected all of them.

7 Symmetry Analysis
ඝai඲ing-ba෈ed c඲ฬඝෙog඲aඝhic ෈cheme෈ exist in two set-
tings: symmetric (Type-i) and asymmetric (Type-i i i). Symmetric
schemes are more convenient for cryptographers, and, consequently,
are the variant more commonly found in papers. But asymmetric
schemes are more performant, so implementers prefer them.36 The
difference between the settings lies on the use of bilinear maps (gen-
erally represented by 𝑒 in the literature and by E in ෈dl): in sym-
metric schemes, both operands are of type G1; while in asymmetric
schemes the operands have the types G1 and G2. In either case the
result is in GT.37

Symmetric and asymmetric uses of bilinear maps are disallowed
within a single cryptographic scheme. We introduce relations that
hold when a given scheme is symmetric, or when it is asymmetric;
and another relation holds when the scheme makes consistent use of
only a single symmetry.

ෙhe symmetric? relation holds when the cryptographic scheme is
symmetric:
symmetric?*⟦expressions*⟦s⟧, infer⟦s⟧⟧

symmetric?⟦s⟧

G1 = infer*/e⟦e3, Γ⟧

symmetric?*⟦(e1 ... (E e2 e3) e4 ...), Γ⟧

The definition of symmetric? depends on auxiliary meta-functions
expressions* (§ 4) and infer (§ 6) to extract the relevant information
from the scheme. Then it uses the auxiliary relation symmetric?*,
which holds when there exists a bilinear map (E) in the scheme such
that its second input is of type G1.

ෙhe asymmetric? relation holds when the cryptographic scheme is
asymmetric:
asymmetric?*⟦expressions*⟦s⟧, infer⟦s⟧⟧

asymmetric?⟦s⟧

G2 = infer*/e⟦e3, Γ⟧

asymmetric?*⟦(e1 ... (E e2 e3) e4 ...), Γ⟧

These definitions are analogous to those of symmetric?, except that
it holds when there exists a bilinear map (E) in the scheme such that
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38 See § B for a visualization of this graph.

its second input is of type G2. Both bl෈ and cl, as defined in § 3, are
asymmetric, so only symmetric? holds for them.

finallฬ, ผe define the relation consistent-symmetry?, which de-
pends on the relations above and holds when the given cryptographic
scheme does not include both symmetric and asymmetric bilinear
maps:
consistent-symmetry?*⟦expressions*⟦s⟧, infer⟦s⟧⟧

consistent-symmetry?⟦s⟧

¬⟦∧⟦symmetric?*⟦any, Γ⟧, asymmetric?*⟦any, Γ⟧⟧⟧

consistent-symmetry?*⟦any, Γ⟧

8 Dependence Analysis
ฑa඲iable definiෙion෈ and ෮෈e෈ determine a flow of data
within a cryptographic scheme, and, consequently, security prop-
erties. For example, in a signature scheme, the signature must depend
on the private key and on the message; and verifying it must depend
on the public key and on the message, but not on the private key. We
introduce a dependence analysis which produces a dependency graph,
which supports the checks for these invariants (§ 9). Moreover, the
dependency graph informs sophisticated term-rewriting techniques,
including AutoGroup+, which we will explore in the future (§ 14).

ෙhe dependencies meta-function receives as input a cryptographic
scheme and outputs its dependency graph:
dependencies : s → g

dependencies⟦s⟧  = dependencies*⟦s, indices⟦s⟧⟧
dependencies* : _ Xindices → g

dependencies*⟦[dt ... da ...], Xindices⟧  = ∪⟦dependencies*⟦dt, Xindices⟧, ..., dependencies*⟦da, Xindices⟧, ...⟧

dependencies*⟦(define-type x τ), Xindices⟧  = ([x ↦ ()])

dependencies*⟦(define-algorithm (x x/τ ...) de ...), Xindices⟧  = ∪⟦dependencies*⟦de, Xindices⟧, ...⟧

dependencies*⟦(dk x/τ e), Xindices⟧  = ([x/τ->x⟦x/τ⟧ ↦ dependencies/e⟦e, Xindices⟧])

dependencies*⟦(define-output/composite x (x/τ ...)), Xindices⟧  = ([x ↦ (x/τ->x⟦x/τ⟧ ...)])

The specification for dependencies depends on the indices (§ 4)
auxiliary meta-function to extract the relevant information from the
scheme, and delegates to dependencies*. The definition of dependen-
cies* traverses the cryptographic scheme, accumulating the dependen-
cies for each definition. It finds the dependencies within expressions
using another auxiliary meta-function dependencies/e, which we intro-
duce next.

The following is the dependency graph for bl෈:38
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39 Indices are introduced by expressions
using opl operators, and are not dependen-
cies.

((M ↦ ())
(g ↦ ())
(x ↦ ())
(pk ↦ (g x))
(sk ↦ (x))
(σ ↦ (M sk))
(h ↦ (M))
(valid? ↦ (h pk σ g)))

And the following is the dependency graph for cl:
((M ↦ ())
(g ↦ ())
(x ↦ ())
(y ↦ ())
(X ↦ (g x))
(Y ↦ (g y))
(pk ↦ (X Y))
(sk ↦ (x y))
(a ↦ ())
(b ↦ (a y))
(c ↦ (a x M y))
(σ ↦ (a b c))
(valid? ↦ (Y a g b X M c)))

ෙhe dependencies/e meta-function finds dependencies within an ex-
pression. It works by traversing the expression looking for variables
that are not indices:39
dependencies/e : _ Xindices → X

dependencies/e⟦x, Xindices⟧  = ()

 where ∈⟦x, Xindices⟧

dependencies/e⟦x, Xindices⟧  = (x)

dependencies/e⟦(any ...), Xindices⟧  = ∪⟦dependencies/e⟦any, Xindices⟧, ...⟧

dependencies/e⟦any, Xindices⟧  = ()

෮෈ing ෙhe data-flow graph determined by the meta-functions
above, we can define relations which predicate on wether any vari-
able in a set of potential dependencies is in fact a dependency for a
given expression. This presents a more convenient method to query
the graph and deals with details related to composite bindings. The
following is the definition of the depends?/any relation:

depends?/any*⟦dependencies/e⟦e, Xindices⟧,
∪⟦Xpotential-dependencies,
ranges*⟦�lter⟦gdefinitions/composites/transitive-closure,

Xpotential-dependencies⟧⟧⟧,
gdependencies/transitive-closure⟧

depends?/any⟦e, Xpotential-dependencies, gdefinitions/composites/transitive-closure,
Xindices, gdependencies/transitive-closure⟧
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keygen Generate Keys
pk Public Key
sk Secret (Private) Key
M Message
σ Signature

overlap?⟦ranges*⟦�lter⟦gdependencies/transitive-closure, Xvariable-references⟧⟧,
Xpotential-dependencies⟧

depends?/any*⟦Xvariable-references, Xpotential-dependencies, gdependencies/transitive-closure⟧
The depends?/any relation uses the dependencies/e meta-function

defined above to determine the dependencies in the given expression
and the filter and ranges* auxiliary meta-functions (§ A) to extract the
relevant information from composite bindings. A transitive closure
of the graph of composite bindings is necessary because a depen-
dence may refer to a component of a binding. For example, if pk is
the composition of x and y, then depending on x entails (indirectly)
depending on pk. Finally, the auxiliary depends?/any* relation holds
when there is an overlap between the set of potential dependencies in
the query and the actual dependencies found in the expression.

a naෙ෮඲al co෮nෙe඲ඝa඲ෙ to the depends?/any relation defined
above is depends?/all, which holds if all the potential dependencies in
the query are actual dependencies:
depends?/any⟦e, (xpotential-dependencies), gdefinitions/composites/transitive-closure,

Xindices, gdependencies/transitive-closure⟧ ...

depends?/all⟦e, (xpotential-dependencies ...), gdefinitions/composites/transitive-closure,
Xindices, gdependencies/transitive-closure⟧

9 Signature Scheme Verification
all definiෙion෈ ෙh෮෈ fa඲ have been agnostic to the kind of
cryptographic scheme, but, for one of our case studies (AutoBatch
Generalization, § 12), we are particularly interested in signature
schemes. We introduce in this section a verifier that checks whether
a cryptographic scheme defined by the cryptographer is a signature
scheme. This is an example of the sophisticated reasoning allowed
by the analyses we described in the previous sections. We expect to
extend ෈dl with verifiers for other kinds of cryptographic schemes in
the future (§ 14).

A signature scheme is characterized by its algorithms, the data it
computes, and by how data flows:

• The cryptographic scheme must define at least the algorithms
keygen, sign and verify.

• keygen has no required inputs.
• keygen must output at least pk and sk.
• sign must receive as inputs at least sk and M.
• sign must output at least σ.
• The computation of σ must depend on sk and M.
• verify must receive as inputs at least pk, M and σ.
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40 The form expected by AutoBatch

• verify must not receive as input sk.
• verify must output only valid?.
• valid? must be of type B (boolean).
• The computation of valid? must depend on pk, M and σ.
• All local variables (define-local and define-local/precomputed) must
be used.

• The expression to compute valid? must have a specific form40 (see
below).

ෙhe folloผing language extension specifies the format for expres-
sions defining valid? in signature schemes:
vex ::= veq | (and veq ...)
veq ::= (= ves ves)
ves ::= vef | (× vef ...)
vef ::= vet | (↑ vet e) | (∏ x e e vef)
vet ::= x | (E e e)

ෙhe signature-scheme? relation holds if the cryptographic scheme s is
a signature scheme:
signature-scheme?*⟦de�nitions/expressions⟦s⟧, transitive-closure⟦de�nitions/composites⟦s⟧⟧,

inputs/s⟦s⟧, locals/s⟦s⟧, outputs/s⟦s⟧, algorithms⟦s⟧, indices⟦s⟧, infer⟦s⟧,
transitive-closure⟦dependencies⟦s⟧⟧⟧

signature-scheme?⟦s⟧
∧⟦⊆⟦(keygen sign verify), Xalgorithms⟧,

⊆/g⟦([keygen ↦ ()]), ginputs⟧,

⊆/g⟦([keygen ↦ (pk sk)]), goutputs⟧,

⊆/g⟦([sign↦ (sk M)]), ginputs⟧,

⊆/g⟦([sign↦ (σ)]), goutputs⟧,

depends?/all⟦σ, (sk M), gdefinitions/composites/transitive-closure,
Xindices, gdependencies/transitive-closure⟧,

⊆/g⟦([verify ↦ (pk M σ)]), ginputs⟧,

¬⟦⊆/g⟦([verify ↦ (sk)]), ginputs⟧⟧,

=?⟦(valid?), lookup⟦verify, goutputs⟧⟧,

∈⟦lookup⟦valid?, Γ⟧, (B)⟧,

depends?/all⟦valid?, (pk M σ), gdefinitions/composites/transitive-closure,
Xindices, gdependencies/transitive-closure⟧,

⊆⟦ranges*⟦glocals⟧, ranges*⟦gdependencies/transitive-closure⟧⟧⟧ vex = lookup⟦valid?, anydefinitions/expressions⟧

signature-scheme?*⟦anydefinitions/expressions,
gdefinitions/composites/transitive-closure,
ginputs, glocals, goutputs, Xalgorithms, Xindices, Γ,
gdependencies/transitive-closure⟧
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41 Klop 1992.

The signature-scheme? relation depends on auxiliary meta-functions
to extract relevant information from the cryptographic scheme s. And
each precondition in signature-scheme?* corresponds to one of the
conditions mentioned above. Both ෈dl and cl as specified in § 3 are
signature schemes according to these criteria.

10 Term Rewriting
one of ෙhe main objectives in designing ෈dl is to support machine-
aided design of cryptographic systems, and an important task in this
area is to systematically rewrite terms in the language. In this section
we introduce general techniques based on term rewriting systems,41
and on the next sections (§ 11 and § 12) we present examples of these
techniques in use.

ෙhe fi඲෈ෙ and mo෈ෙ ෮෈ef෮l term rewriting technique is the
meta-function, and, in Redex, there is convenient notation to define
meta-functions. Consider the (arguably contrived) use case of trans-
forming all additions into multiplication, an initial attempt would be
the following:
(define-metafunction sdl
[(+->× (+ any ...)) (× any ...)])

To use this meta-function, it is called like a function in the lan-
guage:
> (term (+->× (+ 2 3)))
'(× 2 3)

We might want, however, for the+->× meta-function to ignore
other kinds of inputs:
(define-metafunction sdl
[(+->× (+ any ...)) (× any ...)]
[(+->× any) any])

The definition above works because clauses in the meta-function
definition are tested in order, and the first that matches is the meta-
function result, so the any in the second clause only matches non-+
forms, for example:
> (term (+->× (/ 2 3)))
'(/ 2 3)

The final hurdle is that the operation of interest (addition, in our
running example) might occur nested in other expressions and defi-
nitions, so we introduce a recursive descent traversal on the abstract
syntax:
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42 We avoid reaching for unquoting unless
strictly required, to keep the specification
self-contained.

(define-metafunction sdl
[(+->× (+ any ...)) (× any ...)]
[(+->× (any ...)) ((+->× any) ...)]
[(+->× any) any])

Note the second clause, which deconstructs a form, calls the meta-
function+->× recursively on the parts and constructs a new form
with the results. This addresses cases such as the following.

> (term (+->× (/ (+ 2 3) 3)))
'(/ (× 2 3) 3)

ෙhe඲e a඲e mo඲e sophisticated term rewritings for which meta-
functions are not sufficient, for example, those requiring knowledge
of the context or interactions with external tools like ෈mෙ solvers.
For those cases, Redex provides an arbitrary extension mechanism
called unquoting, denoted by the comma (,), which allows a meta-
function to escape to arbitrary Racket code, including side-effecting
computations.42 In this context, terms in ෈dl are treated as S-
expressions accessible using the term form. Consider the following
example of a+->× variation which logs the addition operands
while rewriting the terms:

(define-metafunction sdl
[(+->× (+ any ...))
,(begin

(displayln (term (any ...)))
(term (× any ...)))]

[(+->× (any ...)) ((+->× any) ...)]
[(+->× any) any])

The following is an use example:

> (term (+->× (+ 2 3)))
(2 3)
'(× 2 3)

Besides the rewritten term—'(× 2 3)—the output also includes
the printed operands: (2 3). There is an important caveat to using
this technique: Redex caches the meta-function applications to im-
prove performance, and, depending on the use case, it might be best
to turn caching off:

> (term (+->× (/ (+ 2 3) (+ 2 3))))
(2 3)
'(/ (× 2 3) (× 2 3))
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43 The type inferencer works over expres-
sions both in additive andmultiplicative
notations, to inform the pass we intro-
duce in this section, but the type checker
expects multiplicative notation.

> (parameterize ([caching-enabled? #f])
(term (+->× (/ (+ 2 3) (+ 2 3)))))

(2 3)
(2 3)
'(/ (× 2 3) (× 2 3))

On the first example, the operands are only printed once, despite
the rewriting happening twice, due to caching; whereas on the second
example caching is disabled, so the operands are printed twice.

11 Case Study: Consistent Use of Group Operators
ෙhe඲e a඲e ෙผo notations for group operations in pairing-based
cryptography: additive and multiplicative. To simplify ෈dl’s ecosys-
tem we introduce a normalization pass which converts the former
into the latter, to be run between type inference and type checking
(§ 6),43 as an example of a simple transformation pass defined using
our term rewriting techniques (§ 10).

While both additive and multiplicative notations are valid, it is
not possible to mingle them in the same cryptographic scheme, so
we start by defining a relation consistent-group-operators? which only
holds when the cryptographic scheme makes consistent use of group
operators:
consistent-group-operators?*⟦additions+subtractions⟦s⟧, multiplications+divisions⟦s⟧, infer⟦s⟧⟧

consistent-group-operators?⟦s⟧
¬op-uses-G/τ?⟦eadditions+subtractions, Γ⟧ ...

consistent-group-operators?*⟦
(eadditions+subtractions ...), (emultiplications+divisions ...), Γ⟧

¬op-uses-G/τ?⟦emultiplications+divisions, Γ⟧ ...

consistent-group-operators?*⟦
(eadditions+subtractions ...), (emultiplications+divisions ...), Γ⟧

The top-level consistent-group-operators? relation relies on auxiliary
meta-functions to extract the relevant expressions from the crypto-
graphic scheme (the arithmetic operations), as well as on the type
inferencer to recover the types of the operands. Finally, it depends on
the consistent-group-operators?* auxiliary relation, which only holds
if either additive or multiplicative notation is unused, or, in other
words, if it is not the case that both notations are used. The consistent-
group-operators?* auxiliary relation depends on the following relations
to determine whether the operands are group elements:
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G/τ = infer*/e⟦e1, Γ⟧

op-uses-G/τ?⟦(opn e1 e2 ...), Γ⟧

G/τ = infer*/e⟦e3, Γ⟧

op-uses-G/τ?⟦(opl x e1 e2 e3), Γ⟧
¬⟦op-uses-G/τ?⟦any, Γ⟧⟧

¬op-uses-G/τ?⟦any, Γ⟧

Next, we want to ascertain whether the scheme uses additive nota-
tion and needs to go through the normalization transformation, or if
it can skip it:
op-uses-G/τ?⟦e2, infer⟦s⟧⟧ (e1 ... e2 e3 ...) = additions+subtractions⟦s⟧

uses-+/--group-operators?⟦s⟧
Finally, the normalize-group-operators meta-function uses term

rewriting techniques to convert group operators using additive no-
tation into multiplicative notation, which affects the forms +, - and
∑:
normalize-group-operators : s → s

normalize-group-operators⟦s⟧  = normalize-group-operators*⟦s, infer⟦s⟧⟧
normalize-group-operators* : _ Γ → _

normalize-group-operators*⟦e1, Γ⟧  = (× normalize-group-operators*⟦e2, Γ⟧ ...)
 where op-uses-G/τ?⟦e1, Γ⟧, e1 = (+ e2 ...)

normalize-group-operators*⟦e1, Γ⟧  = (÷ normalize-group-operators*⟦e2, Γ⟧ ...)
 where op-uses-G/τ?⟦e1, Γ⟧, e1 = (- e2 ...)

normalize-group-operators*⟦e1, Γ⟧  = (∏ normalize-group-operators*⟦e2, Γ⟧ ...)
 where op-uses-G/τ?⟦e1, Γ⟧, e1 = (∑ e2 ...)

normalize-group-operators*⟦(any ...), Γ⟧  = (normalize-group-operators*⟦any, Γ⟧ ...)

normalize-group-operators*⟦any, Γ⟧  = any

The following is an example of normalize-group-operators applied to
the artificially oversimplified cryptographic scheme [(define-algorithm
(keygen) (define-output pk (+ (random G1) (random G1))))]:

((define-algorithm (keygen) (define-output pk (× (random G1) (random G1)))))

And the following is an example of normalize-group-operators ap-
plied to the artificially oversimplified cryptographic scheme [(define-
algorithm (keygen) (define-output pk (∑ x 0 1 (random G1))))]:

((define-algorithm (keygen) (define-output pk (∏ x 0 1 (random G1)))))

12 Case Study: AutoBatch Generalization
a෮ෙobaෙch i෈ a tool to design batch signature verification schemes
from regular signature verification schemes which helps cryptog-
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44 Akinyele et al. 2014a,b.

45 URL https://docs.racket-lang.
org/reference/parameters.html
46 The implementation is not included in
this document, it consists of a function that
increments the current small exponent
index parameter and returns it.
47 See § 10.

raphers construct systems optimized for particular loads (batch
sizes). AutoBatch’s core is a collection of semantically-preserving
term rewrite rules for verification equations that define a space of
equivalent equations. We generalize the original implementation44 in
the context of our new ෈dl ecosystem.

a෮ෙobaෙch ඲eත෮i඲e෈ additional parameters to operate, besides
the signature verification scheme and the verification equation con-
tained in it. These parameters are provided in the language, using the
p non-terminal, for example, for bl෈:

((batch-size ↦ 100)
(single-signer? ↦ #t)
(security-parameter ↦ 80)
(extra-untrusted-variables ↦ ()))

ෙhe fi඲෈ෙ ෈ෙeඝ in AutoBatch is to add small exponents 𝛿 to the un-
trusted terms in the verification equation (M σ). The small exponents
are a list, and there is a Racket function next-small-exponent
to generate indices in this list, which returns a new fresh index each
time it is called, and we use Racket’s parameters to define it.45,46
The top level add-small-exponents function is a Racket function
which initializes the current index counter, disables caching47 and
calls the auxiliary metafunction add-small-exponents*:

https://docs.racket-lang.org/reference/parameters.html
https://docs.racket-lang.org/reference/parameters.html
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add-small-exponents* : vex gdefinitions/composites/transitive-closure Xindices gdependencies/transitive-closure p → vex

add-small-exponents*⟦veq, gdefinitions/composites/transitive-closure,
Xindices, gdependencies/transitive-closure, p⟧

 = add-small-exponent⟦veq, gdefinitions/composites/transitive-closure,
Xindices, gdependencies/transitive-closure, (next-small-exponent), p⟧

 where needs-small-exponent?⟦veq, gdefinitions/composites/transitive-closure,
Xindices, gdependencies/transitive-closure, p⟧

add-small-exponents*⟦veq, gdefinitions/composites/transitive-closure,
Xindices, gdependencies/transitive-closure, p⟧

 = veq

add-small-exponents*⟦(and veq ...), gdefinitions/composites/transitive-closure,
Xindices, gdependencies/transitive-closure, p⟧

 = (and add-small-exponents*⟦veq, gdefinitions/composites/transitive-closure,
Xindices, gdependencies/transitive-closure, p⟧ ...)

add-small-exponent : e gdefinitions/composites/transitive-closure Xindices gdependencies/transitive-closure eδ p → e

add-small-exponent⟦(= ves ...), gdefinitions/composites/transitive-closure,
Xindices, gdependencies/transitive-closure, eδ, p⟧

 = (= add-small-exponent⟦ves, gdefinitions/composites/transitive-closure,
Xindices, gdependencies/transitive-closure, eδ, p⟧ ...)

add-small-exponent⟦(× vef ...), gdefinitions/composites/transitive-closure,
Xindices, gdependencies/transitive-closure, eδ, p⟧

 = (× add-small-exponent⟦vef, gdefinitions/composites/transitive-closure,
Xindices, gdependencies/transitive-closure, eδ, p⟧ ...)

add-small-exponent⟦vef, gdefinitions/composites/transitive-closure,
Xindices, gdependencies/transitive-closure, eδ, p⟧

 = (↑ vet merge-×⟦eδ, e⟧)

 where needs-small-exponent?⟦vef, gdefinitions/composites/transitive-closure,
Xindices, gdependencies/transitive-closure, p⟧

, vef = (↑ vet e)

add-small-exponent⟦vet, gdefinitions/composites/transitive-closure,
Xindices, gdependencies/transitive-closure, eδ, p⟧

 = (↑ vet eδ)

 where needs-small-exponent?⟦vet, gdefinitions/composites/transitive-closure,
Xindices, gdependencies/transitive-closure, p⟧

add-small-exponent⟦any, gdefinitions/composites/transitive-closure,
Xindices, gdependencies/transitive-closure, eδ, p⟧

 = any

The definitions of add-small-exponents* and its auxiliary meta-
function add-small-exponent follow the term rewriting techniques
from § 10, and depend on the needs-small-exponent? relation intro-
duced next. The form with pink background represents unquoting
(escaping to arbitrary Racket code). The following is an example of
add-small-exponents applied to (= (E h pk) (E σ g)):

(= (↑ (E h pk) (@ δ 1)) (↑ (E σ g) (@ δ 1)))

ෙhe add-small-exponents function defined above depends on
the needs-small-exponent? which holds if and only if the given argu-
ment is untrusted:
depends?/any⟦e, ∪⟦Xuntrusted, lookup*⟦extra-untrusted-variables, p, ()⟧⟧,

gdefinitions/composites/transitive-closure,
Xindices, gdependencies/transitive-closure⟧

needs-small-exponent?⟦e, gdefinitions/composites/transitive-closure,
Xindices, gdependencies/transitive-closure, p⟧

afෙe඲ haฑing added the small exponents, AutoBatch has to
consolidate the equations that are part of the signature verification,
which amounts to combining the equations sides by multiplying
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them:
consolidate-equation : vex → veq

consolidate-equation⟦(and veq)⟧  = veq

consolidate-equation⟦(and (= ves1-l ves1-r) (= ves2-l ves2-r) veq ...)⟧  = consolidate-equation⟦
(and (= merge-×⟦ves1-l, invert⟦ves1-r⟧⟧ merge-×⟦ves2-l, invert⟦ves2-r⟧⟧) veq ...)⟧

consolidate-equation⟦veq⟧  = veq

The consolidate-equation meta-function depends on a few auxil-
iary arithmetic meta-functions (§ A). The following is an example of
consolidate-equation applied to (and (= (↑ (E a b) (@ δ 1)) (↑ (E c d) (@ δ
1))) (= (↑ (E e f) (@ δ 2)) (↑ (E g h) (@ δ 2)))):

(=
(× (↑ (E a b) (@ δ 1)) (↑ (E c d) (- (@ δ 1))))
(× (↑ (E e f) (@ δ 2)) (↑ (E g h) (- (@ δ 2)))))

ෙhe neลෙ ෈ෙeඝ on the AutoBatch pipeline is to convert a signature
scheme that verifies a single signature into a batch verifier. It is nec-
essary to add indices to the terms that vary, for example, messages
and public keys (unless there is a parameter saying there is only a
single signer):
batch : veq gdependencies/transitive-closure p → veq

batch⟦(= ves1 ves2), gdependencies/transitive-closure, p⟧  = (= (∏ z 1 η add-indices⟦ves1, gdependencies/transitive-closure, Xindexable⟧)
(∏ z 1 η add-indices⟦ves2, gdependencies/transitive-closure, Xindexable⟧))

 where Xindexable = if⟦lookup⟦single-signer?, p⟧, (M σ), (M σ pk)⟧

add-indices : _ gdependencies/transitive-closure Xindexable → _

add-indices⟦(@ δ integer), gdependencies/transitive-closure, Xindexable⟧  = (@ (@ δ integer) z)

add-indices⟦x, gdependencies/transitive-closure, Xindexable⟧  = (@ xlist z)

 where overlap?⟦lookup⟦x, gdependencies/transitive-closure⟧, Xindexable⟧, xlist = (string->symbol (~a x  “-list”))

add-indices⟦(any ...), gdependencies/transitive-closure, Xindexable⟧  = (add-indices⟦any, gdependencies/transitive-closure, Xindexable⟧ ...)

add-indices⟦any, gdependencies/transitive-closure, Xindexable⟧  = any

The following is an example of the batch meta-function applied to
the equation (= (↑ (E h pk) (@ δ 1)) (↑ (E σ g) (@ δ 1))):

(=
(∏ z 1 η (↑ (E (@ h-list z) pk) (@ (@ δ 1) z)))
(∏ z 1 η (↑ (E (@ σ-list z) g) (@ (@ δ 1) z))))

aෙ ෙhi෈ ඝoinෙ the scheme is suited for verification of a batch of
signatures, but it has to be optimized for the particular load in terms
of batch size. AutoBatch’s approach is to repeatedly apply a collection
of semantic-preserving transformations to the equation, looking for
the optimal version according to some objective function which, for
example, assigns greater cost to generating group elements than it
does to adding two numbers together. The rewrite rules follow the
rules of arithmetic and properties of bilinear maps, for example,
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48 The definition of define-technique
is not in this document, but is available in
the implementation.

moving an exponent inside a pairing: 𝑒(𝑎, 𝑏)𝑐 →  𝑒(𝑎𝑐, 𝑏). To facilitate
writing these rules, we introduce a new form define-technique,48
for example:
(define-technique (move-exponent-inside-pairing)
[((↑ (E e_1 e_2) e_3)) (E (↑ e_1 e_3) e_2)])

The following is an example of the rule applied to the term (= (∏ z
1 η (↑ (E (@ h-list z) pk) (@ (@ δ 1) z))) (∏ z 1 η (↑ (E (@ σ-list z) g) (@ (@ δ 1)
z)))):

(=
(∏ z 1 η (E (↑ (@ h-list z) (@ (@ δ 1) z)) pk))
(∏ z 1 η (E (↑ (@ σ-list z) (@ (@ δ 1) z)) g)))

In the previous AutoBatch implementation, rules of this kind re-
quired hundreds of lines of code, and in our new ෈dl framework it
can be expressed in two. But the work on this application is not fin-
ished (§ 14), in particular, the driver of the goal-directed search and
the heuristics to guide it are left as future work, as the scope of this
report is the foundational work in ෈dl.

13 Cryptographic Primitives Interface
c඲ฬඝෙog඲aඝhic ෈cheme෈ defined in ෈dl can be converted
into executable code in the form of libraries for other programming
languages, for example, Rust and Python. The same term rewriting
techniques introduced above (§ 10) applies: these code-generation
back-ends traverse the cryptographic scheme and generate code in the
target language. The resulting code depends on auxiliary libraries to
provide the ෈dl cryptographic primitives: bilinear maps (E), types for
group elements (G1, G2 and GT), and so forth.

The development of back-ends is beyond the scope of this quali-
fying project (§ 15), which focuses on the core ෈dl design. But we
introduce the specification of an interface between the generated
code and the auxiliary libraries. The code-generation back-ends must
output code using this interface, and auxiliary libraries must imple-
ment it. This specification is high-level, and instances should adapt it
to the features provided by the target language. In particular, imple-
menters should consider the following aspects of the interface, which
some languages do not support:
• Identifiers including non-a෈cii Unicode code points.
• Overloaded operators.
• Parametric polymorphic list types.

ผe a෈෈෮me that the target language includes types for strings,
integers, booleans and lists. In addition, the auxiliary library must
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49 Operation : Type: Description

provide types for:

• ZR: Elements of the ring of integers modulo 𝑟.
• G1, G2 and GT: Group elements.

ผe a෈෈෮me that the target language includes the basic operations
over strings, integers, booleans and lists. In addition, the auxiliary
library must provide operations for:49

• G1.hash : → G1: Hashing over elements of G1.
• G2.hash : → G2: Hashing over elements of G2.
• String.random : → String: Draw a random string.
• Integer.random : → Integer: Draw a random integer.
• Boolean.random : → Boolean: Draw a random boolean.
• ZR.random : → ZR: Draw a random element of the ring of integers
modulo 𝑟.

• G1.random : → G1: Draw a random element from group G1.
• G2.random : → G2: Draw a random element from group G2.
• GT.random : → GT: Draw a random element from group GT.
• G1.init : → G1: Return an initial element from group G1.
• G2.init : → G2: Return an initial element from group G2.
• GT.init : → GT: Return an initial element from group GT.
• ZR.init : → ZR: Return an initial element of the ring of integers mod-
ulo 𝑟.

• + : ZR ZR → ZR: Addition over elements of the ring of integers mod-
ulo 𝑟.

• - : ZR ZR → ZR: Subtraction over elements of the ring of integers
modulo 𝑟.

• × : ZR ZR → ZR: Multiplication over elements of the ring of integers
modulo 𝑟.

• × : G1 G1 → G1: Multiplication over elements of the group G1.
• × : G2 G2 → G2: Multiplication over elements of the group G2.
• × : GT GT → GT: Multiplication over elements of the group GT.
• ÷ : ZR ZR → ZR: Division over elements of the ring of integers modulo

𝑟.
• ÷ : G1 G1 → G1: Division over elements of the group G1.
• ÷ : G2 G2 → G2: Division over elements of the group G2.
• ÷ : GT GT → GT: Division over elements of the group GT.
• ↑ : I ZR → I: Exponentiation of integer to the power of element of the
ring of integers modulo 𝑟.

• ↑ : ZR ZR → ZR: Exponentiation over elements of the ring of integers
modulo 𝑟.

• ↑ : ZR I → ZR: Exponentiation of element of the ring of integers mod-
ulo 𝑟 to the power of integer.
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50 The ellipsis (…) means “zero or more
repetitions of the previous form.”

• ↑ : G1 I → G1: Exponentiation of element of group G1 to the power of
integer.

• ↑ : G2 I → G2: Exponentiation of element of group G2 to the power of
integer.

• ↑ : GT I → GT: Exponentiation of element of group GT to the power of
integer.

• ↑ : G1 ZR → G1: Exponentiation of element of group G1 to the power
of element of the ring of integers modulo 𝑟.

• ↑ : G2 ZR → G2: Exponentiation of element of group G2 to the power
of element of the ring of integers modulo 𝑟.

• ↑ : GT ZR → GT: Exponentiation of element of group GT to the power
of element of the ring of integers modulo 𝑟.

• · : Any… → String:50 Bit-wise concatenation.
• e : G1 G1 → GT: Bilinear map (𝑒) in symmetric setting (§ 7).
• e : G1 G2 → GT: Bilinear map (𝑒) in asymmetric setting (§ 7).

14 Future Work
ෙhe඲e a඲e ෈eฑe඲al dimensions in which we plan to proceed with
our work. The first is developing a front-end for ෈dl consisting of a
concrete syntax and accompanying tools. The goal of this concrete
syntax is to be familiar to cryptographers, and the following is a
preliminary sketch of a program defining bl෈ in it:
keygen() {
g = random(G2)
x = random(ZR)
pk = g^x
sk = x

return pk, sk, g
}

sign(sk, M) {
sig = H(M, G1)^sk
return sig

}

verify(pk, M, sig, g) {
h = H(M, G1)
return (e(h, pk) =?= e(sig, g))

}

The plans for this surface language include extended features in
the form of syntax sugar, for example, user-defined functions that
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51 This limits the capabilities of these user-
defined functions; for example, they cannot
be unboundedly recursive.

52 Felleisen et al. 2015.

53 Findler et al. 2002.

54 Krishnamurthi 2001.

55 Akinyele et al. 2015.
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57 Sasson et al. 2014.

58 Beurdouche et al. 2015.

will be inlined by the front-end before converting to ෈dl, in a process
similar to macro expansion.51 We also anticipate the development of
a lightweight module system similar to the one in Python.

Among the auxiliary tools, the most important is a command-line
interface (cli) that integrates the modules we described in this doc-
ument and allows users to control them. Additionally, we consider
bringing ෈dl into the Racket ecosystem52 by creating a #lang for it.
This would pave the way to build more tools which make ෈dl more
ergonomic, including a syntax highlighter, an auto-indenter and in-
line error markers, which we would reuse from DrRacket.53 Also, we
plan on working on more informative error messages, and our course
of action is instrumenting the executable specification we presented
in this report with hidden side-conditions. Finally, we will produce
user documentation which goes less in depth about the implementa-
tion than this document and is geared towards cryptographers; this
documentation will take the form of a manual and a website.

on ෙhe comඝile඲ back-end, we will develop code generators
that transform schemes in ෈dl into libraries for general-purpose pro-
gramming languages, including Rust, JavaScript, Python, C++ and
so forth. As a special case, we consider targeting LATEX to assist cryp-
tographers inspecting schemes and writing papers. The techniques
to build these back-ends is term rewriting (§ 13), and the generated
code will treat cryptographic primitives as black boxes by following
an interface (§ 13). Additionally, we also contemplate developing a
back-end in Racket through linguistic reuse.54

afෙe඲ ෙhi෈ fo෮ndaෙional ผo඲k is complete, we will develop
more applications, completing the missing aspects of the AutoBatch
generalization (§ 12), for example, the heuristics to guide the search,
and revisiting the work in AutoGroup+,55 which will exercise ෈dl’s
capability of escaping to Racket as a general extensibility mechanism,
because it depends on an ෈mෙ solver to find solutions to constraint
satisfaction sub-problems. We foresee applications for our language
in CloudSource56 and zk-SNARKs in Zcash,57 as well as in the study
of cryptographic protocols, for example, ෙl෈, which would be con-
ducted by adding a ෈dl code-generation back-end for tools such as
FlexTLS.58 Finally, we expect to use ෈dl in the development of adap-
tive cryptographic systems which generate cryptographic schemes
just-in-time, responding to demands in the environment; for exam-
ple, the batch signature verification in car-to-car communications,
in which the batch size varies according to the situation and the
schemes could be optimized correspondingly.
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59 Akinyele et al. 2014a,b, 2013b, 2015,
Akinyele 2013.

60 Lewis.

61 Felleisen et al. 2009.

ෙhe඲e ෈ෙill ඲oom for improvement in ෈dl’s core, which we
plan to address in the future. This spans from minor features—for
example, let function arguments have optional default values—to
major ones—for example, a more sophisticated type system which
incorporates notions of privacy and trust among its properties.

eลෙen෈ibiliෙฬ i෈ a co඲e ෙeneෙ in ෈dl design, and there
are aspects left for us to explore in the time to come. We plan on
building auxiliary d෈ls on top of Redex to: aid on the definitions
of other kinds of cryptographic schemes, beyond signature schemes
(§ 9); specify transformation rules and heuristics for AutoBatch; and
code-generation back-ends. Along these lines, we also want to de-
vise mechanisms for cryptographers to bring their own cryptographic
primitives into the system, possibly apart from pairing-based encryp-
tion. These pluggable components would include information about
the types of the operations, to inform the type system, and interface
with the code-generation process.

finallฬ, in terms of theory, we want to pursue frameworks for
specifying semantics, which would allow us to define ෈dl’s seman-
tics in a self-contained manner, instead of relying on translation to
general-purpose programming languages. At this point, we will be in
a position to explore meta-theoretic properties of the language and
related definitions, for example, the soundness of its type system.

15 Related Work
ෙhe ผo඲k clo෈e෈ෙ ෙo ෈dl is the auto-tools family of machine-
aided cryptography design.59 They introduced ෈dl’s first version,
of which the language in this report is a revision, addressing short-
comings including the absence of a formal specification as well as
constructs such as deeply nested loops. Also along these lines there
is Cryptol, a d෈l for cryptographic systems60. The first noticeable
difference between Cryptol and ෈dl is that Cryptol was designed for
hardware circuits, whereas ෈dl attempts to be more general, despite
the current implementation focusing on pairing-based encryption. We
do consider drawing inspiration from Cryptol for the upcoming devel-
opment of ෈dl’s concrete syntax (§ 14). Finally, the techniques used
to specify ෈dl and operations on it, including term rewriting (§ 10),
come from Redex.61
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16 Conclusion
ผe inෙ඲od෮ced ෈dl, a d෈l for cryptographic systems which
resembles the mathematical specifications found in papers and serves
as foundation for the machine-aided design of cryptographic schemes.
The ෈dl specification includes a grammar for its abstract syntax, a
collection of syntactic analyses, a well-formedness condition which
verifies bindings and scoping rules, a type system, symmetry analy-
sis, dependence analysis, a data-flow analysis to verify that a given
scheme is a signature scheme, techniques for rewriting terms in the
language, and an interface with cryptographic primitives to be pro-
vided in languages targeted by code generators. We also explored
two case studies, the first being a simple example of term rewriting
to guarantee the consistent use of multiplicative notation in group
operators, and the second being a generalization of AutoBatch.

A core tenet in ෈dl design is extensibility. While the current ver-
sion is focused on pairing-based signature schemes, we anticipate
the language being able to support other kinds of cryptographic
schemes, including public-key cryptography, identity-based encryp-
tion, attribute-based encryption, cryptographic protocols and so forth.

The specification found in this document is executable, for being
based on Redex, and there is a suite of tests to assert that this ref-
erence implementation conforms to cryptographer’s expectations.
Besides the core language, it is left for future work the other com-
ponents of a compiler for a fully-featured language, including a
front-end for a concrete syntax (lexer, parser, and so forth), as well
as back-ends for compiling schemes in ෈dl into libraries for general-
purpose programming languages. The main issue to be addressed
in the near future is to make the language more ergonomic, by pro-
viding cryptographers with a concrete syntax and editor support,
including syntax highlighting and more informative error messages.
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A Auxiliary Definitions
ෙhe a෮ลilia඲ฬ data structures in the ෈dl specification are de-
fined as language extensions, and operations on them are construc-
tively defined using syntactic manipulations. Most operations are
standard, mathematical relations which we represented as Redex
meta-functions and relations. In this appendix we introduce these
definitions, which were used throughout the rest of the document.

A.1 Lists
ෙhe all=? relation holds if and only if all elements in the list are
equal:

all=?⟦()⟧

all=?⟦(any)⟧

all=?⟦(any1 any2 ...)⟧

all=?⟦(any1 any1 any2 ...)⟧

ෙhe unique meta-function remove duplicate elements in a list:
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unique : (_ ...) → (_ ...)

unique⟦()⟧  = ()

unique⟦(any1 ... any2)⟧  = unique⟦(any1 ...)⟧
 where ∈⟦any2, (any1 ...)⟧
unique⟦(any1 ... any2)⟧  = ∪*⟦unique⟦(any1 ...)⟧, (any2)⟧

ෙhe unique? relation holds if and only if the list does not contain
duplicate elements:
unique?⟦(any!_ ...)⟧

ෙhe ∪* meta-function returns the concatenation (union with re-
peated elements) of the given lists:
∪* : (_ ...) ... → (_ ...)

∪*⟦(any ...), ...⟧  = (any ... ...)

A.2 Sets
෈eෙ෈ are represented as lists without repeated elements.

ෙhe empty? relation holds only for the empty set (or the empty list):
=?⟦any, ()⟧

empty?⟦any⟧

ෙhe ∪ meta-function returns the union of the given sets:
∪ : (_ ...) ... → (_ ...)

∪⟦any, ...⟧  = unique⟦∪*⟦any, ...⟧⟧

ෙhe ∩ meta-function returns the intersection of the given sets (or
lists):
∩ : (_ ...) ... → (_ ...)
∩⟦⟧  = ()
∩⟦(), any, ...⟧  = ()
∩⟦(any1 any2 ...), any3, ...⟧  = ∪⟦(any1), ∩⟦(any2 ...), any3, ...⟧⟧
 where (#t ...) = (∈⟦any1, any3⟧ ...)
∩⟦(any1 any2 ...), any3, ...⟧  = ∩⟦(any2 ...), any3, ...⟧

ෙhe ∈ relation holds if and only if the element is in the set (or list):
∈⟦any1, (any2 ... any1 any3 ...)⟧

ෙhe ∉ relation holds if and only if the ∈ relation does not hold:
¬⟦∈⟦any1, any2⟧⟧

∉⟦any1, any2⟧
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ෙhe ⊆ relation holds if and only if the set on the left is a subset of
(or equal to) the set on the right:

⊆⟦(), any⟧

∈⟦any1, (any3 ...)⟧ ⊆⟦(any2 ...), (any3 ...)⟧

⊆⟦(any1 any2 ...), (any3 ...)⟧

ෙhe =? relation holds if and only if the sets are equal:
⊆⟦any1, any2⟧ ⊆⟦any2, any1⟧

=?⟦any1, any2⟧

ෙhe set-- meta-function returns the set without the given element:
set-- : (_ ...) (_ ...) → (_ ...)

set--⟦(), any⟧  = ()

set--⟦(any1 any2 ...), any3⟧  = set--⟦(any2 ...), any3⟧

 where ∈⟦any1, any3⟧
set--⟦(any1 any2 ...), any3⟧  = ∪⟦(any1), set--⟦(any2 ...), any3⟧⟧

ෙhe disjunct? relation holds if and only if the sets are disjunct (no
elements in common):
empty?⟦∩⟦any1, any2⟧⟧

disjunct?⟦any1, any2⟧

ෙhe overlap? relation holds if and only if there is at least one element
in common in the sets:
¬⟦disjunct?⟦any1, any2⟧⟧

overlap?⟦any1, any2⟧

A.3 (Multi-)Maps
(m෮lෙi-)maඝ෈ are sets of mappings (pairs indexed by the left el-
ement). They can also be interpreted as enumerations of cases of
partial functions.

ෙhe lookup meta-function returns the element(s) at the given index:
lookup : x ([x ↦ _] ...) → _

lookup⟦x, ([x1 ↦ any1] ... [x ↦ any] [x2 ↦ any2] ...)⟧  = any

ෙhe lookup* meta-function returns the element(s) at the given index
if it occurs in the map, otherwise it returns the given default value:
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lookup* : x ([x ↦ _] ...) _ → _

lookup*⟦x, ([x1 ↦ any1] ... [x ↦ any] [x2 ↦ any2] ...), any3⟧  = any

lookup*⟦x, any1, any2⟧  = any2

ෙhe filter meta-function filters the given indexes in the map:
�lter : ([x ↦ _] ...) (x ...) → ([x ↦ _] ...)

�lter⟦(), any3⟧  = ()

�lter⟦([x1 ↦ any1] [x2 ↦ any2] ...), any3⟧  = ∪⟦([x1 ↦ any1]), �lter⟦([x2 ↦ any2] ...), any3⟧⟧

 where ∈⟦x1, any3⟧
�lter⟦([x1 ↦ any1] [x2 ↦ any2] ...), any3⟧  = �lter⟦([x2 ↦ any2] ...), any3⟧

ෙhe domain meta-function returns the indexes in the map:
domain : ([x ↦ _] ...) → (_ ...)

domain⟦([x ↦ any] ...)⟧  = (x ...)

ෙhe ranges meta-function returns the ranges in the map separately:
ranges : ([x ↦ _] ...) → (_ ...)

ranges⟦([x ↦ any] ...)⟧  = (any ...)

ෙhe ranges* meta-function returns an aggregation (union) of the
ranges in the map:
ranges* : ([x ↦ (_ ...)] ...) → (_ ...)

ranges*⟦([x ↦ any] ...)⟧  = ∪⟦any, ...⟧

A.4 Graphs
g඲aඝh෈ are represented as multi-maps.

ෙhe ∪ meta-function returns an union of the graphs (the point-wise
union of the edges):
∪/g : ([x ↦ (_ ...)] ...) ([x ↦ (_ ...)] ...) → ([x ↦ (_ ...)] ...)

∪/g⟦(), any⟧  = any

∪/g⟦([x1 ↦ any1] [x2 ↦ any2] ...), ([x3 ↦ any3] ... [x1 ↦ any4] [x5 ↦ any5] ...)⟧  = ∪⟦([x1 ↦ ∪⟦any1, any4⟧]), ∪/g⟦([x2 ↦ any2] ...), ([x3 ↦ any3] ... [x5 ↦ any5] ...)⟧⟧

∪/g⟦([x1 ↦ any1] [x2 ↦ any2] ...), any3⟧  = ∪⟦([x1 ↦ any1]), ∪/g⟦([x2 ↦ any2] ...), any3⟧⟧

ෙhe ⊆/g relation holds if and only if the graph on the left is (point-
wise) a subset of (or equal to) the graph on the right:

⊆/g⟦(), any⟧

⊆⟦any1, any5⟧ ⊆/g⟦([x2 ↦ any2] ...), any3⟧ any3 = ([x4 ↦ any4] ... [x ↦ any5] [x6 ↦ any6] ...)

⊆/g⟦([x ↦ any1] [x2 ↦ any2] ...),
any3⟧
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62 The fixpoint of the transitive relation:
𝑎 ↦  𝑏,  𝑏 ↦  𝑐 ⇒  𝑎 ↦  𝑐.

ෙhe edges meta-function returns an enumeration of the edges in the
graph:
edges : ([x ↦ (_ ...)] ...) → ([x ↦ _] ...)

edges⟦([x ↦ (any ...)])⟧  = ([x ↦ any] ...)

edges⟦([x ↦ (any ...)] ...)⟧  = ∪⟦edges⟦([x ↦ (any ...)])⟧, ...⟧

ෙhe transitive-closure meta-function returns the transitive closure of
the edges in the graph:62
transitive-closure : ([x ↦ (_ ...)] ...) → ([x ↦ (_ ...)] ...)

transitive-closure⟦any⟧  = transitive-closure*⟦any, transitive-closure*/step⟦any⟧⟧
transitive-closure* : ([x ↦ (_ ...)] ...) ([x ↦ (_ ...)] ...) → ([x ↦ (_ ...)] ...)

transitive-closure*⟦any, any⟧  = any

transitive-closure*⟦any1, any2⟧  = transitive-closure*⟦any2, transitive-closure*/step⟦any2⟧⟧
transitive-closure*/step : ([x ↦ (_ ...)] ...) → ([x ↦ (_ ...)] ...)

transitive-closure*/step⟦any⟧  = transitive-closure*/step/step⟦any, any⟧

transitive-closure*/step/step : ([x ↦ (any ...)] ...) ([x ↦ (_ ...)] ...) → ([x ↦ (_ ...)] ...)

transitive-closure*/step/step⟦(), any⟧  = ()

transitive-closure*/step/step⟦([x1 ↦ (any1 ...)] [x2 ↦ (any2 ...)] ...), any3⟧  = ∪⟦([x1 ↦ ∪⟦(any1 ...), lookup*⟦any1, any3, ()⟧, ...⟧]),

transitive-closure*/step/step⟦([x2 ↦ (any2 ...)] ...), any3⟧⟧

A.5 Syntax
ෙhe folloผing are auxiliary definitions for the abstract syntax
(§ 3):

ෙhe x/𝜏→x metafunction extracts the variable from a variable asser-
tion:
x/τ->x : x/τ → x

x/τ->x⟦x⟧  = x

x/τ->x⟦[x : τ]⟧  = x/τ->x⟦x⟧

ෙhe simplify-opn meta-function normalizes a (non-gramatical) use of
an opn nonterminal with only one operand:
simplify-opn : _ → e

simplify-opn⟦(opn e)⟧  = e

simplify-opn⟦any⟧  = any

A.6 Booleans
ෙhe folloผing are constructive definitions of boolean (logic)
operators:

ෙhe ¬ meta-function returns the opposite boolean:
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¬ : boolean → boolean

¬⟦#t⟧  = #f

¬⟦#f⟧  = #t

ෙhe ∧ meta-function returns true (#t) if and only if all the arguments
are true:
∧ : boolean ... → boolean
∧⟦#t, ...⟧  = #t
∧⟦any, ...⟧  = #f

ෙhe if meta-function returns the second argument if the first is true
(#t), otherwise it returns the third argument:
if : boolean _ _ → _

if⟦#t, any1, any2⟧  = any1

if⟦#f, any1, any2⟧  = any2

A.7 Arithmetic
ෙhe folloผing operations perform arithmetic in ෈dl:

ෙhe merge-× meta-function returns the abstract syntax for multiply-
ing (×) the arguments, avoiding superfluously nested operands:
merge-× : e e → e

merge-×⟦(× e1 ...), (× e2 ...)⟧  = (× e1 ... e2 ...)

merge-×⟦e1, (× e2 ...)⟧  = (× e1 e2 ...)

merge-×⟦(× e1 ...), e2⟧  = (× e1 ... e2)

merge-×⟦e1, e2⟧  = (× e1 e2)

ෙhe invert meta-function returns the abstract syntax for the inverse
of the given argument, avoiding nested inverses:
invert : e → e

invert⟦(× e ...)⟧  = (× invert⟦e⟧ ...)
invert⟦(↑ ebase -1)⟧  = ebase

invert⟦(↑ ebase (- eexponent))⟧  = (↑ ebase eexponent)

invert⟦(↑ ebase eexponent)⟧  = (↑ ebase (- eexponent))

invert⟦ebase⟧  = (↑ ebase -1)

B Visualization
ผe de෈igned ෈dl and most operations on it directly in Redex,
avoiding escaping to Racket with unquote (,), which makes the
model self-contained and complete. But that power is still available
to us, and it is advantageous to explore it for some use cases. In this
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Example output: BLS dependency graph.
63 Ellson et al. 2001.

64 Findler et al. 2002.

section we introduce an example of this: a visualization technique for
the graphs generated by some analyses passes, including Dependence
Analysis (§ 8).

The graphs are represented as extended language constructs,
via an encoding included in a language extension (§ 4). But, from
Racket’s standpoint, language constructs are regular data structures
(S-expressions); we can access them and perform arbitrary computa-
tions. We compile the graph into a Graphviz63 representation and call
out to the tool.

The main use of this visualization is to aid debugging the specifica-
tion. To this end, we integrated it in the programming environment,
DrRacket64:

The whole tool was implemented in less than thirty minutes and
twenty lines of code, demonstrating the practicality of this technique.
Besides this simple example, the tight integration between the Re-
dex model and the Racket ecosystem hosting it provide a promising
extension surface. When the rewriting techniques introduced in this
report (§ 10) do not suffice for an application, escaping to Racket can
solve the issue. We anticipate this will be useful, for example, to let
the transformation passes interact with ෈mෙ solvers to find solutions
for constraints introduced by data-flow dependencies.
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