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Developing accurate and efficient program analyses for languages with higher-order functions is known
to be difficult. Here we define a new higher-order program analysis, Demand-Driven Program Analysis
(DDPA), which extends well-known demand-driven lookup techniques found in first-order program analyses
to higher-order programs.

This task presents several unique challenges to obtain good accuracy, including the need for a new method
for demand-driven lookup of non-local variable values. DDPA is flow- and context-sensitive and provably
polynomial-time. To efficiently implement DDPA we develop a novel pushdown automaton metaprogramming
framework, the Pushdown Reachability automaton (PDR). The analysis is formalized and proved sound, and
an implementation is described.
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1 INTRODUCTION

Developing an accurate but efficient higher-order program analysis is hard. Building on older
first-order abstract interpretations [8], a large array of higher-order analyses have been developed
over the last twenty years [11, 22, 24, 32-35, 44, 51, 52]. Unfortunately, in spite of all the technical
advances these analyses are not commonly employed in compilers for higher-order functional
languages today: MLton [54] and Stalin [45] are among the few whole-program optimizing compilers
that use these tools. Even in those cases, the analyses are often used in their less expressive versions.
The primary reason is the difficulty in getting both expressiveness and efficiency in the presence of
higher-order functions due to their significantly greater complexity than the first-order case.

To address this issue, we have developed Demand-Driven Program Analysis (DDPA), a novel
analysis for higher-order programs. We do not (yet) claim that it solves this longstanding problem,
but it takes a fundamentally different approach with fundamentally different trade-offs between
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expressiveness and performance. Demand-driven program analyses are different than forward-
running analyses in that they only look up values when needed (“on demand”). Demand-driven
analyses were initially developed for first-order programs [10, 20, 21, 38, 40, 42, 43] where they
were shown to achieve good performance/expressiveness trade-offs: if only some of the variables
of the programs need analyzing, the work of analyzing un-needed variables is avoided.

The primary goal of this paper is to extend first-order demand-driven analyses to higher-order
programs. It is well-known that program analysis for languages with higher-order functions is more
difficult since the control flow graph or CFG (“which functions are called where?”) is dependent on
the data flow (“which functions could be in which variables?”) [29, 35], and so data- and control-flow
must be simultaneously computed. A similar issue, so-called structure-transmitted data dependence
[39], also arises in first-order programs: precision on data structure accesses requires combined
control- and data-flow precision. These first-order techniques transfer poorly to higher-order
programs due to a lack of non-local variable alignment, which affects the lookup precision of
variables captured in a higher-order function’s closure.

Here we develop a novel demand-driven higher-order analysis which precisely aligns non-local
variables; that is, the precision of the analysis on local and non-local variables is the same. Ours is
not the first higher-order demand-driven analysis, but previous analyses in this class [14, 37, 47]
do not align non-local variables and so overapproximate their possible values. A lack of non-local
alignment also appears in first-order demand-driven analyses as well as some higher-order forward
analyses [24, 51]; these analyses use a stack to align calls and returns but lose precision on non-local
variables. The non-local alignment technique in this paper is in spirit based on the use of access
links in a compiler runtime. Context-sensitivity, aka polyvariance/polymorphism, can be achieved
solely by call-return alignment since both local and non-local variables are aligned; there is no
need for explicit copying as in e.g. kCFA [44].

In comparing DDPA with a state-of-the-art forward analysis for higher-order programs, we find
that, when the analyses are configured to achieve the same precision on particular questions, their
comparative performance varies. In some cases, demand-driven analysis is faster than the forward
analysis; in others, the relationship is reversed. Similar results were discovered in the space of
first-order analyses [21].

Synopsis of the paper

In Section 2, we give a detailed overview of DDPA by demonstrating how it analyzes several small
examples. In Section 3, we show how we can approximate the values of variables using pushdown
reachability. Although this reachability technique is common among stack-aligning analyses, we
generalize DDPA’s pushdown automaton (PDA) to a novel pushdown reachability automaton (PDR)
which vastly reduces the state-space search size: schemas of PDA states or transitions can be
represented by single PDR states or transitions.

After this overview, we present the theory of DDPA. We formally define the kDDPA analysis
in Section 4; the parameter k here represents the constant number of stack frames the analysis
preserves, in analogy with kCFA. We prove soundness by first showing in Section 5 that a small-
step operational semantics for the A-calculus is isomorphic to WDDPAc, a graph-based operational
semantics derived from DDPA which retains an unbounded number of stack frames (w) and has
perfect contextual precision (c). We believe wDDPACc is of interest in its own right: it is a novel
presentation of operational semantics for the A-calculus which never duplicates any expressions.
The isomorphism between these operational semantics relations easily leads to the soundness of
the analysis in Section 6. The decidability of the analysis is presented in Section 7. In Section 8, we
present the theory of PDR systems as an efficient technique for implementing the analysis.
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Fig. 1. Expression Grammar

In the theoretical presentation we focus on the pure call-by-value A-calculus to not get over-
whelmed by details; in Section 9 we outline how additional language features may be incorporated.
In Section 10 we evaluate our implementation of this more featureful language in terms of running
time and precision.

We discuss related work in Section 11 and conclude in Section 12.

This paper is extends the original conference paper on DDPA [36] with a PDR-based reference
implementation. Sections 3, 8 and 10 are new. Extended explanations and a more complete theoretical
analysis, including a proof that the unbounded-stack wDDPAc analysis is a full and faithful A-
calculus interpreter, is also included.

2 ANALYSIS OVERVIEW

This section informally presents DDPA by example. We begin with a high-level description of
the analysis and roughly sketch how it works on a small program. This description is incomplete:
we will show how the analysis as described is too imprecise, and we will then describe another
feature of the analysis which in fact addresses this imprecision. This process will be repeated
several times until the entire DDPA algorithm has been described. This section does not touch on
implementation; the following Section 3 will describe at a high level how DDPA may be efficiently
implemented.

2.1 ASimple Language

We use a simple functional language defined in Figure 1. It is a call-by-value A-calculus extended with
conditionals (via pattern matching), records, and state (via ML-like reference cells). Conditionals
are written x ~p ? f; : fo: either fi or f; is called with x as argument, depending on whether x’s
value matches the pattern p. We require that programs are closed, and that variable identifiers
are unique (“alphatized”). We use an A-normal form (ANF) [17] intermediate representation, so a
clause ¢ denotes a program point. The operational semantics for this language is straightforward
and deferred to Section 5.1.

2.2 The Basic Analysis

Consider the program in Figure 2 and the steps to construct its Control-Flow Graph (CFG) in
Figure 3.

CFG construction

In higher-order languages, control flow and data flow are intertwined, so the CFG construction
informs the analysis and vice-versa. The initial CFG on Step 1 of Figure 3 is created by inspecting
the program source to determine the blocks determined by the main program and function bodies.
Program points are abbreviated to the identifier they introduce; for example, m=i a becomes [n).
Then, to preserve the order of evaluation, we look for call sites we can reach from the beginning
of the program by traversing only immediate program points (those that are not function calls
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Fig. 3. Basic analysis example CFG

or conditionals). In this example, @ satisfies this condition, but E does not: the only path to it
from the start of the program includes [}, which is a call site and not an immediate program point.
We say [n] is active, and we resolve it next. Resolving a call site means adding wiring edges and
nodes, which connect the body of the called function around the call site. The wiring nodes contain
information about the call site, the argument and the return value, for reasons which will become
evident later. The resolution of call site @ leads to Step 2; in that step, we write the call site as El
to indicate it is resolved. As E is resolved, the call site [n| becomes active. So, we resolve [n | next,
adding more wiring edges and nodes and arriving at Step 3: a complete CFG with no unresolved
call sites.

In general, the call site resolution process is constructing a graph of all potential control flows in
the program as it moves forward through the partial CFGs, which implies there might be multiple
active call sites at any given point, and the analysis is free to choose which to resolve next, as the
final CFG will be the same when all the call sites are resolved regardless of the order in which
steps are taken. (We prove this confluence result as Lemma 7.6.) Because we never remove edges
or nodes from the partial CFGs, they are monotonically growing during the construction, so the
process can happen incrementally. Also, when there are multiple calls to the same function, there
might be multiple wiring edges connecting to it, but the function body itself is not copied, and
there can only be one pair of wiring edges and nodes between a particular call site and function
body. This guarantees a polynomial upper bound on CFG size. It is possible that the analysis has
to revisit a previously resolved call site and resolve it again when more functions and arguments
become available to it from wirings added elsewhere in the CFG - the construction is complete
when this process reaches a least fixed point. All examples in the remainder of this section start
with a complete control-flow graph built with this process.
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Lookup

To resolve a call site, DDPA has to know which functions were called at that point; how does this
lookup work? For example, when we resolved the call site [n | between Steps 1 and 2, how did DDPA
know that i was the appropriate function to wire? In a typical forward-running program analysis,
abstract stores would be propagated forward along the CFG and the values of function variables
would be established from those stores. Here, we take a different approach.

The lookup began with the question “what are the possible values of i at [ ]?” To find the answer,
DDPA starts traversing the partial CFG backward with respect to control flow, by following the
arrows opposite to where they are pointing in the diagram. It immediately finds (b ), which contained
no information about our variable of interest, so DDPA reformulated our lookup question into
another that must have the same answer: “what are the possible values of i at (b)?” We then follow
another arrow in reverse and found (a), which also contains no information about i and causes
DDPA to reformulate the lookup question again. The same happens on the next step, when we reach

e ). Finally, on the next iteration, DDPA finds the definition of (i), at which point it concludes the
obvious: “the possible values of i at (i) include the function fun x ->...” This answer percolates
back to our original question, because we carefully constructed the intermediary questions so that
their answers would be the same: “the possible values of i at [n] include the function fun x ->...”
This lookup result is why we wire that function around [m).

A similar process occurs when resolving call site [n | between Steps 2 and 3. Again, we have to
lookup the possible values of variable i, but this time we start from a different perspective, [n].
We look at the arrows pointing at [n | backward, and find two nodes: [n| and [w=y on|. We could
non-deterministically explore both paths, but it would be redundant: the function body does not
affect the definition of the (immutable) variable i, so information discovered from exploring it is
equivalent to that discovered by skipping over it and moving to []. Thus, we proceed by doing the
latter and find ourselves asking the same question as before: “what are the possible values of i at
[n]?” We already know the answer from the previous step, so can reuse it to conclude that “the
possible values of i at [n|include the function fun x ->...” Thus, we may add the corresponding
wiring edges and nodes.

The CFG construction and the lookup process are carefully ordered by the active nodes to preserve
evaluation order, so the answer to a lookup question is always complete and never changes. This
allows us to visit nodes with a particular lookup question only once and reuse that answer later.
Also, the analysis is naturally flow-sensitive, because lookup questions are relative to particular
program points.

Context Sensitivity

Lookups are not restricted to finding which functions could be called at a call site - it is possible to
query the value of any variable in scope. For example, let us consider one more lookup: n from the
end of the program in the complete CFG (Step 3). On the first step we look at the arrows in reverse
from the end of the program and find two nodes, [n| and [n=y bn|. In our previous example we had
skipped over a function call because it had not affect the result, but this time it does, so, instead of
skipping to [n], we explore the function call by taking the path to[n=y tn|. At this point, we follow
our lookup process, changing the lookup question to another one with the same answer, and this
new question is not only a change in perspective, but also a change in subject. The wiring node
contains the information that n is y, so we now ask “what are the possible values of y at ?”
The next step is similar: we find that y=x and change our lookup subject to x at (y).

However, now we encounter a problem: there are two nodes we can follow in reverse from (y),

[x=a an] and [x=b an], and if we follow [x=b |, then we eventually find the right answer: “(b=e} is
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a possible value for n by the end of the program;” but if we follow [ x=a_an|, then we discover that
“{a=e} is another possible value for n by the end of the program!” Programmers looking at the
program know that actual execution would never output the latter, because the execution path
leading to it does not make sense: it includes (the entrance node for ED and (the
exit node for [n], which means a function is called at [ | and returns to [n]. The lookup described
thus far does not rule out this misalignment and non-deterministically explores all possible paths,
over-approximating the answer and losing precision.

To resolve this, we introduce another component to the lookup process: the context stack. The
lookup question changes to the form “what are the possible values for variable x at (p) with context
stack [a, b, c]” We push the call site name to the context stack when we visit an exit node
for a function call (in reverse), and we only visit the entrance node for which we can pop the
corresponding call site. For example, when we visit , we push n to the context stack, and,
when we are at (y), we only follow the path to and discard the path to [x=a an], because n is
on the top of the stack. Then the final result will be exact: “only {b=e} is a possible value for n by
the end of the program.”

Numerous higher-order analyses have been developed which show how higher-order functions
can be analyzed, and some of those analyses also include call-return alignment mechanisms
[11, 19, 24, 37, 51]. But, the call-return alignment in these analyses is not fully solving the higher-
order call-return alignment problem: they are more or less porting the first-order notion of call
return alignment over and, since first-order programs have no non-locals, these higher-order
analyses only align local variables. For example, PDCFA [24] and CFA2 [51] only align the so-called
stack references (locals), not the so-called heap references (non-locals). As a result, forward higher-
order analyses cannot rely solely upon stack alignment to achieve the effect of polymorphism; an
additional polymorphism mechanism must be employed. This additional polymorphism machinery
often generates redundant work (e.g. in cases where no non-local variables were used and call-
return alignment would be sufficient) but must be conservatively applied to maintain precision.
A key contribution of our previous work [36] is a method for alignment of non-locals in call-
return alignment via the context stack discipline, which also makes DDPA a context-sensitive
(polyvariant) analysis. This feature is commonly achieved by copying function bodies — kCFA
being the canonical example [35] - but, in DDPA, context-sensitivity relies solely on call-return
alignment. The subtleties of how this works are covered next.

2.3 Non-Local Variable Lookup

The lookup process described so far only included local variables (stack references). We now
address non-local variables (heap references). Consider the program in Figure 4. We build its CFG
as described in the previous section (Figure 5) and start looking up for the values of r from the end
of the program. There is only one call to each function in the program, so we ignore the context
stack and the call-return alignment issue for the rest of this example. We first move to [r=b pr],
changing the lookup subject to b; then we go to (b ), changing the lookup subject to x. At this point,
the lookup process described so far would fail to abstract the notion of lexical scoping and instead
look the for non-local variable in the context of the call site, as opposed to the scope in which the
function was defined: it would skip [y=e ar |, [p], (e) and (k), because they do not immediately affect
the value of our subject x, reach the beginning of the program without finding a value, and fail.
The search process needs to be modified to take lexical scoping rules of non-local variables into
account.

The solution to this issue is inspired by access links used in compilers for higher-order functions.
When visiting in the lookup above, we notice that x is not the function argument, so it
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must be a non-local variable which was in scope at the function definition, not its use. To properly
abstract the notion of lexical scoping we must defer the current lookup, find the program point
defining the function we are exiting (in reverse) and then resume from there. In our example DDPA
executes this by suspending the lookup for x and starting a subordinate lookup for the function we
are exiting, p.

The subordinate lookup for p follows the rules we discussed thus far, entering . The
subject of the lookup changes to a, which we find on the next step at (a). This is the definition of
the function we were looking for, so we can resume the deferred lookup of x from there: we move
to [x=e ap|, change the subject to e, move to () and finally find the answer.

The function definition in the subordinate lookup could be a non-local itself, so, in general, it
is necessary to chain on the above idea, akin to access links. This requires the introduction of a
second stack, besides the context stack discussed above, which we call the lookup stack. The lookup
stack contains the deferred lookups, and the lookup process is complete only when the lookup
stack is empty. There are other uses for the lookup stack in DDPA; for example, to lookup a record
projection, the analysis has to lookup the record and then the value under the projected key. DDPA
keeps the projected key in the lookup stack from the program point containing the projection until
the record is found. Because of this generality, we also refer to the lookup stack as a continuation
stack.

2.4 Function Call Lookup

The lookup process described thus far still loses precision on function calls. Consider the program
in Figure 6, the corresponding CFG in Figure 7, and a lookup for g from the end of the program
with an empty context stack. On the first step, DDPA visits [o=b dq |, changes the lookup subject to b,
and finds three possible paths to continue. The first is [ |, which it discards because it would mean
skipping over a call site that contains information about the lookup subject. On the second path, it
visits [b=d Db, (d), and finds the expected answer: {h=e}. But, on the third path, it visits [b=c b}, (c),
and finds an imprecise answer: {g=e}.

This third path does not make sense during run-time: it requires the [q] call site to pass h as
the value of f but then expects f to be g at [b]. The call-return alignment discipline we described
thus far is not enough to eliminate this path because we reached the answer at () by visiting only
immediate and exit nodes, so we pushed call sites to the context stack but never visited entrance
nodes to try (and fail) pop them.

The solution here is to start a subordinate lookup for operand at the call site before visiting an
exit node and only proceed if the result includes the pertinent function. This subprocess shows that
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our call-return alignment discipline aligns not only the entrance and exit nodes, but also arguments,
even those that are higher-order functions. In our example, before we visit we have to verify
whether g can flow into f. This is not the case, because q is on the top of the context-stack, and the
call-return alignment discipline fails when trying to pop p at [ =g dp}, so we discard this entire path.
But the condition is satisfied for [b=d pb ], part of the path leading to the more exact answer.

2.5 Recursion and Decidability

We now address how the analysis handles recursive functions, which induces cycles in the CFG.
A lookup based on graph traversal as we have thus far described would never end, following the
cycle indefinitely. Consider the program in Figure 8, the corresponding CFG in Figure 9, and a
lookup for the values of r by the end of the program with an empty context stack. DDPA starts by
visiting [ r=a br |, and then [a=a pa |. From there, it can repeatedly follow the cycle back around
and never reach an answer, which is unsurprising as the run-time for this program also does not
terminate. Moreover, the lookup process described thus far includes two stacks, the context stack
and the lookup stack, and with them we could simulate the tape of a Turing Machine, so it looks
very unlikely to be undecidable with two un-finitized stacks. We concretely prove an undecidability
result in Section 5: we define WDDPACc, a two-stack-unbounded analysis, and prove it is a complete
interpreter for the call-by-value A-calculus.

x=x (a | | a=a Da |

(o o)
o=funx -> (a=xx;);
r=oo0;
x=0 (r | | r=a Dr |
o 2
Fig. 8. Recursion example program Fig. 9. Recursion example CFG

To make lookup decidable, we have to start by artificially bounding one of these stacks: if we do
it for the lookup stack, then we impact the precision on non-local variables, record projection, and
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Fig. 11. A one-stack PDS which approximates the two-stack PDS by finitely abstracting the context stack
and embedding it in the nodes.

so forth; and a bounded context stack would impact context sensitivity. We choose the latter. Any
systematic finitization technique of the context stack would work, and in DDPA we use one of the
simplest possible: we truncate the stack to a fixed maximum size of k, in the spirit of kCFA [44].
This characterizes kDDPA as a family of program analyses, parameterized over the choice of k.
Other finitization techniques lead to different trade-offs with respect to precision and performance,
but they are orthogonal to the demand-driven aspects that we are exploring in this work.

In our example, kDDPA would follow the loop around a maximum of k times, at which
point it would exhaust the context stack. When this happens, a subordinate lookup question will
be identical to a lookup question already underway: “what are the possible values for a at
with context stack [a, a, ...]?” In this case, the subordinate lookup immediately returns the
empty set, because there are no other paths contributing to the answer.

Reachability

We described the lookup process in terms of a traversal of the CFG, but this is not how the
algorithm is actually implemented. To realize the analysis in a way that promotes the reuse of
previously computed answers, lookup is encoded in terms of Pushdown System (PDS) reachability
questions [6]. The answer to these questions, in turn, are lazily calculated with a novel construction
called Pushdown Reachability automaton (PDR). The next section describes these automata and
gives an overview of how DDPA can be efficiently implemented.

3 IMPLEMENTATION OVERVIEW

We now give a high-level overview of how lookup in the previous section is efficiently implemented.

3.1 The Basic Analysis — Revisited

In the previous section we introduced lookups as (reverse) traversals on the CFG, but the cycles
induced by recursive functions could be traversed indefinitely, rendering this intuition unrealizable.
DDPA’s solution to this issue comes in three parts: (1) encode the CFG traversals in terms of a
two-stack pushdown automaton; (2) derive a one-stack pushdown automaton which approximates
it; and (3) interpret lookup queries as reachability questions on this automaton, a task known to be
decidable [6].
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To begin with, we construct a two-stack pushdown automaton (two-stack PDA) corresponding
to the CFG traversals from Section 2: nodes in this PDA correspond to nodes in the CFG, edges
correspond to transitions allowed by following control flow in reverse, and edge annotations
correspond to stack manipulations — thick arrows ({J/1) are related to the context stack, and thin
arrows (]/7) to the lookup stack. Since we are searching backwards through the program, we
encounter function returns before the calls and so the context stack stack operations are pushing
returns and popping calls. (This can take some getting used to as it is the exact opposite of the
program run-time stack operations.) The edge to the start state in the PDA represents the start of
the traversal in the CFG by pushing the query subject to the lookup stack, and immediate nodes
are accepting states. The first outstanding characteristic of this PDA, which is also true of all other
automata we will encounter in this paper, is that its input alphabet is empty, because our purpose
is not to recognize a string but to reason about the stack discipline. Automata of this kind are called
pushdown systems (PDS) [6].

As an example, consider the PDS in Figure 10, which illustrates lookups of n and m from the end
of the given program in the CFG from Figure 3. The edge labeled |n on the upper-right corner
starts the traversal looking for n from the end of the program, the node represents visiting
that node in the CFG traversal, and the node (b ) is an accepting node. The main row on the top of
the PDS in the figure corresponds to the complete traversal caused by looking n up from the end of
the program, and the row below corresponds to the traversal caused by looking m up from the end
of the program. The automaton permits sharing the nodes that are identical in both traversals, for
example, (y ). The paths from |n to (b) and from |m to (a) are realizable, but from |n to (a) and from
Im to (b) are not, because they make incompatible choices when popping from the context stack,
preserving the call-return alignment described in Section 2.2.

It is well-known that a two-stack PDA is equivalent in power to a Turing Machine, so we are
clearly flirting with danger here, and concretely we show in Section 5 that wDDPAc, the two-stack-
unbounded analysis, is Turing-complete and thus undecidable. So, we must convert the two-stack
PDS into something strictly weaker to make the analysis computable. DDPA’s approach is to finitely
abstract the context stack configurations and embed them in the PDS nodes, and, if multiple context
stack configurations can occur at the same CFG node, create multiple versions of that node in the
PDS to distinguish them. Any abstraction that bounds the context stack into a finite space suffices,
and different choices have different effects on the analysis’ capacity to align calls and returns. For
simplicity DDPA uses a very basic abstraction technique, similar in spirit to the contour treatment
in kCFA [44]: truncate the context stack beyond length k to create a family of increasingly precise
kDDPA analyses. See Figure 11 for the 1-stack PDS for our running example, in which the node (y
is duplicated and differentiated with two context stacks because we choose k = 1. As illustrated by

b ), for example, node sharing between paths can still occur in this PDS, but it is more rare because
the traversals have to visit the common node with the same context stack configuration.

Both the CFG and PDSs constructions can be incremental, responding to the demands of the
query, because the information discovered is never invalidated at later steps. Moreover, cycles in
the CFG induce cycles in the PDSs, but their construction is finite and decidable because both CFG
and PDSs grow monotonically and in tandem, and nodes and edges cannot be repeated.

Finally, after constructing the PDS, we can use it to answer lookup questions by encoding them
in terms of reachability questions of the form “which accepting states (immediate nodes) can we
reach from this given start state with an empty lookup stack (the context stack embedded in the
node might be non-empty)?” In our example, the accepting state (b) is reachable when starting
from |n, but (a) is not.
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In the literature, several different approaches have been used to refine program analyses via
aligning calls and returns: context-free language (CFL) reachability [40], set constraint solving
[25], PDA reachability [3], and logic programming specifications [42] can all be used. The DDPA
implementation is not aiming for perfect alignment of calls and returns like these analyses, because
it instead focuses on perfect access of non-local variables, and uses the PDS stack for that purpose;
the call stack is always a finite approximation in the nodes of the PDS and so can be viewed more
as having a stack-free finite automaton representation in DDPA. This follows the dominant stream
of higher-order analyses inclluding kCFA and its many refinements — the k represents the fixed
finite length of the call stack. As mentioned above there are many other possibilities for abstraction
other than the simple one used here, for example in code with no recursive non-locals we could in
principle swap and make the call stack arbitrary and the non-locals stack of bounded size. Some
higher-order forward analyses opt for perfect precision on the call stack but then lose precision on
non-locals [19, 24, 51]. The notion of finding good trade-offs between data- and control-precision
is studied in [55].

The above analysis aligns both local and non-local variables, and it is achieving the full effect of
kCFA-style polymorphism; this is apparent in the precision of the above example. So, while the
analysis algorithm is closely related to the CFL-reachability analyses, the effect in the higher-order
space is more closely related to polyvariance than stack alignment.

Finitization of the call stack is not an optimal solution: there are exponentially many finitized
call stacks of length k, so the algorithm is exponential as k grows.! Also, this approach will never
be able to keep perfect call-return alignment for recursive programs on any k. Future work is to
improve on this approximation method.

3.2 Pushdown Reachability Automata

kDDPA depends on solving pushdown reachability, for which the standard algorithm is to perform
an edge closure [6]: continually replace adjacent matching push and pop edges with a single
transitive no-op edge. For any valid path in the original automaton, after closure there will be a
path consisting solely of no-op edges. Pushdown reachability is decidable in polynomial time [6],
which is a pleasant property, and the proof-of-concept implementation of DDPA [36] used this
algorithm to perform variable lookup. But, while straightforward, this approach can be slow in
practice when the number of states and edges is large. Moreover, most of them do not affect the
lookup result, so we define a novel “pushdown reachability” (PDR) automaton, partly inspired by
PDCFA [24], to accelerate reachability queries.

Observe that, over the course of kDDPA, the CFG grows monotonically. As a result, the variable
lookup PDS (and its closure) exhibits similar monotonic growth. As long as we grow the PDS in
tandem with the CFG throughout the course of the analysis, we can use the same data structure for
all variable lookups and avoid duplicating PDA closure work. Moreover, we can identify structural
similarities between edges and compress them to reduce the size of the automaton representation.
These monotonic properties and this compression technique will be crucial in our implementation
of a tractable analysis.

We demonstrate this different form of PDS using the code in Figure 12. Consider the task of
looking up the values of x and y from the end of the program, using the same PDS each time. The
PDS for this program appears in Figure 13, and PDR appears in Figure 14. The only difference
between these automata is that the PDR (Figure 14) contains a new edge annotation. Consider, for
instance, the edge labeled “I|—y”. The PDR treats this edge as a no-op as long as the top of the

IThis is different from kCFA, which is exponential in the program size whenever k > 1 [50].
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Fig. 12. PDR example Fig. 13. PDR example: PDS Fig. 14. PDR example: PDR

é = [6...] expressions 14 = {9,...} value sets

¢ x=b clauses a = ¢ annotated clauses

b o= flil4% i L Qe . De

{7 = f.|x|.xx bodies x=Cx|x=CX|START|END

X = (fdentlﬁers) variables g == a<a control flow graph edges

Zf f values G { é, } control flow graphs

fo== fun x->(é)  functions X == [%,...]  variable lookup stacks

Fig. 15. Analysis Grammar Abstract Elements

. . . Ly -z 1y .

stack is any variable other than y. This means, for example, that the path — ( | — (z) — (y]is

valid in this PDR but the path l_y) Tl;Z> z M y ) is not. These so-called dynamic pop edges

come in a variety of forms and represent PDS transition schemas; the single 1| =z edge, for instance,
replaces an appropriate pop/push edge pair for every variable in the program (excepting z) — the
pop immediately followed by a push of the same non-z subject amounts to a no-op.

In general, the PDS which embodies the above lookup algorithm contains patterns of states and
edges which are dictated by the execution semantics of the language. We use this and other forms
of dynamic pop edges to represent these patterns directly rather than encode them, leading to
a much smaller automaton and therefore faster lookup process. In Section 8, we generalize this
notion of dynamic pop edge and use them to efficiently implement a form of primitive computation
for the more complex rules of the analysis.

4 THE ANALYSIS

In this section, we formalize the DDPA analysis. To simplify presentation, we restrict ourselves
to an A-normalized [17] lambda calculus; we outline how additional language features can be
introduced in Section 9. The operational semantics of the language is eager and standard, and we
postpone it and the soundness proof to Section 6.

The grammar constructs needed for the analysis appear in Figure 15. Items on the left are just
the hatted versions of the corresponding program syntax. Functions are the only data type in
the simplified language. In the analysis, closure environments are subsumed by our treatment of
non-local variables; function values are then represented in the abstract by their bodies alone. Recall
from above that we require variables to be bound uniquely (so-called “alphatised” or “uniquized”
variables). We also have the common requirement that analyzed expressions are closed: a variable
is not used until after a clause in which it is bound.

Edges ¢ in a control flow graph G, are written @ < @’ and mean clause d happens right before
clause d’. New clause annotations (¢ / D¢ are used to mark the entry and exit points for functions.
The Start node is a special node placed at the very start of the program, and similarly for Exp. These
nodes are needed if any wirings are placed around the first or last program clause.
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Definition 4.1. We use the following notational sugar for control flow graph edges:

® (] < dy < ...< 4y, abbreviates {d; < dy,...,dp—1 < dyn}.
o &’ < {dy,...,dn} (vesp. {di,...,d,} < @’) denotes {@’ <« aj,...,4" < dp} (resp. {d4; <
a,...,dp, < a'}).

e We overload @ <1 d’ to mean d < @’ € G for some graph G understood from context.
Definition 4.2. Letrv(é) = xifé=1[¢,...,%x= B]. That is, X is the return variable of é.

Definition 4.3. The initial embedding of an expression into a graph, Emsen([ci, . . ., ¢n]), is the
graph G = Start < ¢; < ... < ¢, < Enp, where each ¢; = ¢;.

This initial graph is just the linear sequence of clauses of the main program.
We are using standard notation [y, . . ., X, ] for lists and || for list append.

4.1 Lookup

As was described in Section 2, the analysis will search back along < edges in the graph G to find
the definitions of variables it needs. We now define this lookup function.

4.1.1 Context Stacks. The definition of lookup proceeds with respect to a current context stack
C. The context stack is used to align calls and returns to rule out cases of looking up a variable
based on a non-sensical call stack, and was described in Section 2.2.

The proof of decidability relies upon bounding the depth of the call stack. We first define a
general call stack model for DDPA, and in Section 7 below we instantiate the general model with a
fixed k-depth call stack version notated kDDPA; this is a simple bounding strategy and our model
can in principle work with other strategies.

Definition 4.4. A context stack model T = (é, €, PusH, Pop, MayseTor) obeys the following:

(1) Cis a set. We use C to range over elements of C and refer to such C as context stacks.
(2) eeC.

(3) Pus(é, €) and Por(C) are total functions returning context stacks. Por(€) = €.

(4) MayseTor(¢, C) is a predicate. MavsrTor(¢, Pusu(C, C)) and MavseTor(¢, €) hold.

(5) If MavseTor(¢, é) then MayseTor(¢, Por(Pusu(¢’, é)))

Generally, the context stack is an approximation of the program’s runtime call stack. The Pusu
and Por function derive new context stacks upon calls and returns and the MavseTor predicate
determines whether the top of the runtime call stack may be a call from site ¢. Models err on the
side of overapproximating MayvseTor for soundness. The distinguished context stack e signifies a lack
of any context information (and not an empty call stack): popping from € yields € and MavseTor(é, C)
is always true for any call site ¢.

A natural family of context stacks is one which retains up to k top stack frames; to also admit
the unbounded case we let k range over Nat U w for w the first limit ordinal. We let [¢4, ..., ¢, ][k
denote [¢y, . . ., ¢ ] for m = min(k, n).

Definition 4.5. For every k € Nat U w, we define context stack model 3 to have C contain the
set of all lists of up to length k of clauses ¢ occurring in the program. We define the remainder of
Yk as follows:

ec=[]

o pusu(¢’,[E1,...,¢n]) = [€,¢1,. .., En]lk

o Por([é1,...,¢n]) = [é2,...,¢x] if n > 0; Por([]) = [].

e MaveeTor(¢/, [E1, ..., Cn]) is true if ¢’ = ¢é; or if n = 0; it is false otherwise.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: August 2019.



1:14 L. Facchinetti, Z. Palmer, S. Smith

We use the term “kDDPA” to refer to DDPA with context stack model 2.

As above, note that € = [] reflects a lack of knowledge of the call stack and not necessarily a lack
of stack frames.

4.1.2  Lookup stacks. Lookup also proceeds with respect to a lookup stack X. The topmost variable
of this stack is the variable currently being looked up. The rest of the stack is used to remember
non-local variable(s) we are in the process of looking up while searching for the lexically enclosing
context where they were defined.

Unlike the context stack above, the lookup stack is unbounded: the process of looking up a
non-local could trigger another non-local lookup of a non-lexically-enclosing function, so there is
no lexical upper bound on the depth of this stack in the general case. Though no finite bound exists
on this stack’s depth, every lookup stack is still finite in size.

Also unlike the context stack, there is no graceful way to approximate when lookup stack
information is lost. So, we must preserve the whole stack in the analysis. Section 2.3 gave motivation
and examples for non-local variable lookup.

4.1.3 Defining the lookup function. Lookup finds the value of a variable starting from a given
graph node. Given a control flow graph G, we write G(X, do, C) to denote a lookup using stack X in
G relative to graph node @, with context C. For instance, a lookup of variable £ from program point
a with unknown context would be written G([ ], 4, €). Note that this refers to looking for values of
X upon reaching program point a but before that point is executed (much like the convention of
interactive debuggers); we are looking for a definition of x in the predecessors of a but not within a
itself.

Definition 4.6. Given control flow graph G, let G(X, o, C) be the function returning the least set
of values V satisfying the following conditions given some d; < d:

(1) [VALUE DISCOVERY]
Ifd, = (#=0)and X = [#], then ¥ € V.
()
Ifa; = (%= f)and X = [#1,...,%,] for n > 0, then G([#, ..., %n],d1,C) C V.
©)
If 4, = (x=%") and X = [#] || X’ then G([#] || X', 41,C) C V
(4) [FuncTioN ENTER PARAMETER]
Ifda; = (% e %), X = [#]]| X’, and MayseTor(é, C), then G([#'] || X', d1, Por(C)) C V.
(5) [FuncTioN ENTER NoON-LocaL]
Ifa; = &7 e %), X = [fc] ||)‘<', X" # % ¢ = (% =% %), and MavseTor(¢, ), then
G([%7, %] 1] X", 41, Por(C)) ©
(6)
Ifa, = (£ #), X = [#][|X", and ¢ = (& =, %), then G([#'] || X", &1, Pusu(é, ) € V,
provided fun %" ->(é) € G([%¢], ¢ C) and &’ = RV(@).
7)
If 4, = (£ =b), X = [#]]| X', and £ # %, then G(X, d1,C) C V.

Note this is a well-formed inductive definition by inspection. Each of the clauses above represents
a different case in the reverse search for a variable. We now give clause-by-clause intuitions.

(1) We finally arrived at a definition of the variable X and so it must be in the result set.
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(2) The variable x; we are searching for has a function value and, unlike clause (1), there are
more variables on the stack. This occurs because clause (5), described below, needed to look
up the next variable, x5, in the place where x; was defined (as in non-local lookup). Now that
we have found %, we remove it from the lookup stack and resume the lookup of x,.

(3) We have found a definition of % but it is defined to be another variable %’. We transitively
switch to looking for %’.

(4) We have reached the start of the function body and the variable x we are searching for was
the formal argument x’. So, continue by searching for x” from the call site. The MavseTor
clause constrains this stack frame exit to align with the frame we had last entered (in reverse).

(5) We have reached the beginning of a function body and did not find a definition for the
variable . In this case, we switch to searching for the clause that defined this function body,
which leads us to push % onto the lookup stack. Once the defining point of %7 is found, we
will pop it and resume looking for X (see clause (2)). The MavseTor clause constrains the stack
frame being exited to align with the frame we had last entered (in reverse).

(6) We have reached a return copy which is assigning our variable x, so to look for x we need
to continue by looking for x’ inside this function. Push ¢ on the stack since we are now
entering the body (in reverse) via that call site. For a more accurate analysis, the “provided”
line additionally requires that we only “walk back” into function(s) that could have reached
this call site; so, we launch a subordinate lookup of X7 and constrain d; accordingly.

(7) Here the examined clause is not a match so the search continues at any predecessor node.
Note this will chain past function call sites which did not return the variable X we are looking
for. This is sound in a pure functional language; when we address state in Section 9.4, we
will enter such a function to verify an alias to our variable was not assigned.

4.2 Abstract Evaluation

We are now ready to present the single-step abstract evaluation relation which incrementally adds
edges to the control flow graph. This system has some parallels with a graph-based notion of
evaluation [27, 53], but in our system function bodies are never copied - a single body is shared.

4.2.1 Active nodes. While evaluation is abstract and graph-based, it shares some features with
standard evaluation: there is an evaluation context [16] of the already-evaluated “expression” (here
a graph) and we need to next evaluate the current “redex”, which here we call the active node. In
particular, only nodes with all previous nodes wired-in can fire.

Definition 4.7. Active?(@’, G) iff path Start < d; < ... < d, < & appears in G such that no d;
is of the form % =%’ £”. We write Actve?(d’) when G is understood from context.

4.2.2  Wiring. Recall from Section 2 how function application required the concrete function
body to be “wired” directly in to the call site node, and how additional nodes were added to copy in
the argument and out the result. The following definition accomplishes this.

Definition 4.8. Let Wire(¢’, fun %o —> ([é1,...,6n]), %1, %2) =

A ’

Preps(¢’) < (%o w X)) K6 < ... < ép < (X9 = RV([¢n])) < Suces(€')
where Preps(d) = {@’ | @’ <1 d} and Suces(a) = {d’ | @ <1 d’}.

e
s

¢’ here is the call site, and ¢; < ... < ¢, is the wiring of the function body. The Preps/Succs
functions reflect how we simply wire to the existing predecessor(s) and successor(s).

Next, we define the abstract small-step relation —' on graphs. With the above preliminaries, this
is easy to define: for each reachable function application with a particular function and argument,
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APPLICATION A ) A A
¢ = ()?1 =Xy )?3) m(é, G) f [S G([)’eg], ¢, E) 0 € G([)Eg], ¢, 6)

G ="' GUWme(E, f, %3, %1)
Fig. 16. Abstract Evaluation Rule

we add wiring nodes to copy the argument into the function and copy its return value to the call
site.

Definition 4.9. We define the small step relatlon —'toholdifa proof exists in the system in

Figure 16. We write Gy =" G,, to denote Gy —' G; —=' ... ="' G,.

The A-normalized lambda calculus only requires an application rule, and languages with addi-
tional control flow constructions (such as the language of Section 9) will need additional rules.

The next sections show the formal properties of the above analysis. Section 5 proves undecidability
with a non-finite context stack model. Section 6 demonstrates the soundness of DDPA with respect
to a standard small-step operational semantics, while Section 7 proves DDPA to be decidable by
reducing the lookup procedure to a PDS reachability problem.

5 A GRAPH-BASED OPERATIONAL SEMANTICS

In this and the following sections we show the soundness of DDPA. We do so in a fashion common
to higher-order program analyses [30, 44, 51]: we prove a standard operational semantics equivalent
to a non-standard one and then show the analysis is a sound abstract interpretation [8] of the
non-standard semantics. For clarity of presentation, our translation of the operational semantics
moves through two intermediate systems as illustrated in Figure 17.

(O concrete system

Sec, 6.2
O abstract system
Y kDDPAc ——{ kDDPA
Sec. 6.1
Sec, 5.1 Sec, 5.2 Sec. 5.3 Sec, 5.4
—_—
lazy lookup f———={ wDDPAc ©DDPA

Fig. 17. Soundness Proof Systems

The operational semantics we start with is closure-based; we take this as ground truth as it is
well-known to be equivalent to other operational semantics for the call-by-value A-calculus. The
target non-standard operational semantics, which we term wDDPAc, is a graph-based operational
semantics which is nearly identical in form to DDPA as presented in Section 4 but is still a full and
faithful interpreter for the CBV A-calculus.

We believe wDDPAC is a unique and interesting presentation of operational semantics in its
own right which may independently have other applications. It lacks closures, substitution, fresh
variables, or an environment, and reductions are all polynomially bounded in length, a very
surprising feature for a Turing-complete interpreter. (This bound may initially seem paradoxical,
but the reduction steps themselves are undecidable. We discuss this further in Section 5.5.)

We dedicate this section of the paper to demonstrating the equivalence of the ground truth
semantics and wDDPAc; soundness of DDPA with respect to wDDPAc is then shown in Section 6.
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e u= [C, .o ] expressions K = <f, E) closures
C = x=b clauses E = [x =K, .. ] environments
b = f | x| xx bodies ¢ u= [(E,e),...] evaluation states
x == (identifiers) variables
v = f values
f == fun x->(e) functions
Fig. 18. Concrete Language Grammar Fig. 19. Closure-Based Evaluation Grammar
DEFINITION
[KE, [x=f1lle)] ¢ —" [KElllx = (f.E)l )]l ¢
ALIAS
(x> k) €EE
[KE. [x1=x2] 1| e)] [l ¢ —" [EI[x1 = kL. e)] Il ¢
CaLL

¢ =[E [xi=xzx3]ll)]|¢" (x> (funxy—> (e’ ), E'))€E  (x3>K)€E
¢ —" [E [l[xs = x], €Nl ¢

RETURN

KEII[x = ], [, (', [x1 =22 x3] | )] 11 ¢ —" [ [[[x1 = kL e)] Il ¢

Fig. 20. Closure-Based Operational Semantics

5.1 Closure-Based Operational Semantics

We begin by defining an environment/stack/closure-based operational semantics for the A-calculus.
This is not far in spirit from a CEK machine [15]. The grammar of our language appears in Figure 18;
this is simply the grammar from Figure 15 with hats removed (or, the grammar from Figure 1
without records, pattern matching, or state). We additionally define the grammar of Figure 19 for
use in our operational semantics: environments E are mappings from variables to closures, closures
k are pairs of functions and environments, and evaluation states ¢ are a stack of pairings between
environment and instructions to be executed.

As in Section 2, we restrict all variable bindings throughout a particular program to be unique
for convenience. We define RV(e) similarly to Definition 4.2 to return the last variable defined by
an expression.

We define the closure-based small step operational semantics as a relation ¢ —! ¢ as follows:

Definition 5.1. ¢ —' ¢ holds if a proof exists in the system of Figure 20. We write ¢y —* @y,
iff pp —! ... —1 @,

The rules in Figure 20 are largely straightforward. Each rule acts upon the topmost element of
the ¢ stack. The Definition rule, upon encountering an assignment of function f to variable x, will
add the binding x +— (f, E) to the environment, where E is a copy of the previous environment
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I == x> k|0|D stackless evaluation terms

L = [I,...] stackless evaluation logs
De

L = c¢|x = x stackless evaluation instruction

I == [4...] stackless evaluation expressions

Fig. 21. Stackless Evaluation Grammar

representing the non-local variables of f. The Alias rule is similar, copying the current value of x;,
from the environment into a new binding for x;. The Call rule pushes a new frame onto the ¢ stack
in which to execute the function’s body; the Return rule pops a completed frame and updates the
caller’s environment with the functions return value which, as in Definition 4.2, we take to be the
last assignment in the function’s body.

Note that, throughout evaluation, the only variables added to an environment E on the stack
are those from the function’s closure and from the function body. Due to the unique variable
requirement of expressions, no variable can be defined in both; as a result, each x — « within an
environment maps a distinct variable.

5.2 A Stackless Operational Semantics

We now begin taking the steps toward wDDPAc as outlined in Figure 17. Each step toward wDDPAc
makes some aspect of the system more demand-driven rather (while still maintaining call-by-value
evaluation semantics). In this first step, we define an operational semantics which stores binding
information in a flat historical log rather than in a stack. In addition to bindings, this log stores
events in which stack frames are pushed and popped, so it can fully replace the environments E of
the previous system.

The grammar for the stackless system appears in Figure 21. An evaluation state is a pairing
between a log L and a stackless expression I; note that every e is of form I. In addition to clauses,
stackless expressions may include annotated assignments indicating when functions return. When
functions are called,  is added to the log to record the event; when a function returns, this is
recorded with D. As a result, the log L stores all bindings throughout the execution of program
(even those which are no longer in scope); we then define a function to extract an environment
from a provided log which will skip over any variables in functions that have already returned.

Definition 5.2. We define the environment splitting function SeuitEnv(L, n, E) for non-negative
integer n as follows:
seutEnv([], n, E) = ([], E)
SeurtEnv(L’ ||[D], n, E) = SeurEnv(L’, n + 1, E)
seurtEnv(L’||[0], 0, E) = (L", E)

seurtEnv(L’ ||[0], n, E) = SeurrEnv(L’,n — 1, E) when n > 0
seuitEnv(L’ ||[x +— k], 0, E) = SeurtEnv(L/, 0, [x — k] || E)
seuitEnv(L’ ||[x +— k], n, E) = SeurtEnv(L’, n, E) when n > 0

We write SerrtEnv(L) to abbreviate SerrtEnv(L, 0, []). We define ExtractExv(L) = E when SpuitEnv(L) =
(L', E).

This function traces the log backwards, building the environment E by finding each binding
which occurred during the call to this function or one of its calling ancestors. The second argument
is a number counting intermediate function calls to ensure that non-closure-captured bindings
from within previously-called functions are not included in the resulting environment.
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ALIAS
DEFINITION X3 > K € ExTracTENv(L)
Li[x=f]I|lI —" L||[x + (f,ExtractExv(L))];] Li[x1=x] || I —" L||[x1 — k];I
CaLL
¢ = (x1=x2 x3)
(9 > (funxy > (e’ ), E)) € ExtractEnv(L) (x3 > K) € ExTrACTENV(L)

Lilel 11 —" LI | Ell[xs = clie’ [[Bx £ RV 1

RETURN
(x2 > k) € ExTracTENV(L)

D
Lilx = %] [T —" LlIDx = k)1
Fig. 22. Stackless Operational Semantics

With this extraction function, we can define the stackless operational semantics. We overload
the —s1 operator as follows:

Definition 5.3. L;1 —! L’:I" holds if a proof exists in the system of Figure 22. We write
L(),I() —> Ln,In iffL(),I() —1 Ce —l Ln,In.

5.2.1 Proof of Equivalence. We now demonstrate the equivalence of the above operational
semantics to the one in the previous section. This is accomplished by establishing a bisimulation
= between the original program states ¢ and the stackless program states L; I. We formalize this
bisimulation as follows:

Definition 5.4. We write ¢ = L;I to mean either ¢ = L = I = [] or all of the following:
o ¢ =[(E,e)] || ¢". (The stack is non-empty)
e SeutEnv(L) = (L', E). (The extracted environment matches the topmost stack frame.)

e [ =e||[D]||I’. (The remaining instructions are the same in both systems.)
o If ¢’ # [] then ¢’ = L’;I'. (This property holds inductively for each stack frame.)

This bisimulation trivially holds for the start of evaluation: that is, for any e, [{[],e)] = [];e.
Proving the remainder of equivalence relies upon a key lemma to preserve the bisimulation at each
evaluation step:

LEMMA 5.5. If ¢ = L;I then
o ifp —1 ¢ then L;1 —>' L'; I’ such that ¢’ = L';I’, and
o if ;] —' L';I' then g —>' ¢’ such that ¢’ = L';I".

Proor. By case analysis on the rule used. In particular, each rule in Figure 20 aligns with each
rule in Figure 22 such that the premises of a rule can be proven by the premises of its counterpart
and the properties of the bisimulation. O

In the above proof, the only non-trivial steps exist between the Call and Return rules. First, the
systems differ in how they represent a call in progress (an existing call site on the stack in the
original system and an annotation in the stackless system). Second, we must be able to demonstrate
that ExtractEnv correctly describes the environment E both when a new function is called and when
a running function returns. The latter relies upon the  and D symbols appearing in the binding log;
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de De
= X=0 | X=X | X =X | X = X  environment terms

z
Z = z,...] environments
de De
w = c|lx=x|x=x clauses
w = [W, .. ] expressions
X == [x,...] variable stacks

Fig. 23. Lazy Lookup Evaluation Grammar

that these annotations are present is a consequence of the inductive property of the bisimulation
described above.

5.3 An Operational Semantics with Lazy Lookup

Our next step toward «DDPAc is to define an operational semantics which looks up the value
of variables on demand rather than eagerly constructing bindings. This lazy lookup operation is
starting to get close to DDPA’s lookup operation (Definition 4.6): like DDPA, it traces backward
through the program to reconstruct bindings as needed, including reconstruction of the context of
a function’s closure when needed.

We define the grammar we require for this system in Figure 23. Unlike the previous systems,
our program state for this operational semantics will simply be an expression W with no explicit
environment. Although we provide a grammar of environments Z, this is primarily used to describe
the first unevaluated call site of the expression W.

Lazy lookup is defined in function Z(X, n) as follows. We use X as a stack of variables in a fashion
similar to DDPA’s Definition 4.6. The integer n serves a purpose similar to Definition 5.2: to skip
over bindings no longer in scope.

Definition 5.6. For a given environment Z, we define the lookup function Z(X, n) as follows:

(1) fZ = Z’ ||[x =v] then Z([x],0) = v.

2 UZ=2"||lx=f]and X = [x]|| X’ for X’ # [] then Z(X, 0) = Z'(X’, 0).

(3) IfZ =Z'||[x=x"] then Z([x] || X’,0) = Z'([x"] || X’, 0).

@Iz=2"|Ix e x'] then Z([x] || X’,0) = Z'([x'] || X’, 0).

G)IfZ=2"||[x" s x'], x"" # x,and ¢ = (x, =xf x,), then Z([x] || X", 0) = Z'([x7, x] || X', 0).
6)IfZ=2"||[x L x’] then Z([x] || X’,0) = Z'([x'] ]| X’, 0).

(7) IfZ =Z"||[x'=b] and x # x’ then Z([x] || X', n) = Z'([x] || X', n).

8) If Z=Z7"||[x=b] and n > 0 then Z(X,n) = Z'(X, n).

O IfZ=2"||[x e x'land n > 0then Z(X,n) = Z'(X,n - 1).

(10) fZ=2"|[x e x'land n > 0then Z(X,n) = Z'(X,n + 1).
We write Z(X) to mean Z(X, 0).

As with the environment extraction function in Definition 5.2, the integer here is used to
disregard variables which were bound in calls that have since completed. One key difference in
these definitions is that Definition 5.2 stops its work upon reaching a ¢ symbol with n = 0 (which
indicates that we have left local scope) whereas Definition 5.6 continues past the  with n = 0.
In the eager stackless system of Section 5.2, we copied the closure of each function into place
immediately after the start-of-call symbol (. In this lazy system, we will not; instead, for non-local
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APPLICATION
c=(x1=x2x3)  Z([x2],0) = funxy->(e’)  Z([x3],0)=v

de De
ZNellw —" Zllxs = xs]1le [I[x1 = RV(eN | W
Fig. 24. Lazy Lookup Operational Semantics

variables captured in closure, clause 5 will first identify the point in time at which the closure was
captured and then continue lookup from that point.

This lookup definition is similar to Definition 4.6 of DDPA. The most notable differences are the
absence of a context parameter and the presence of the n parameter. The former is not necessary
here as context can be established from a traversal of Z. The latter is required here but not in the
analysis because the program point immediately following a function call in DDPA has at least two
predecessors — the call’s wiring nodes and the call node itself — while the list Z may only have one.
The next section defines an operational semantics to bridge this gap.

Given the above lazy lookup function, we can define an operational semantics as follows:

Definition 5.7. W —! W’ holds if a proof exists in the system of Figure 24. We write Wy, —* W,
iffw, —1... -t w,.

Note that Figure 24 contains only one evaluation rule, lining up closely with DDPA Figure 16
and considerably simplifying the four rules from the previous systems. The previous Definition
and Alias rules are obsolete here due to the lazy manner in which lookup occurs and the fact that
we no longer construct explicit closures. The Call and Return rules have been grouped into a single
Application rule; this is also possible due to lazy lookup, as we no longer need to process the exit
annotation when the function returns.

5.3.1 Proof of Equivalence. We now demonstrate that the operational semantics just defined is
equivalent to the stackless semantics defined in Section 5.2. As in Section 5.2.1, we demonstrate this
via a bisimulation between states of the two systems. This bisimulation is somewhat more subtle,
however, as we must first align the eager and lazy environments and then align evaluation states.

To describe the relationship between the systems’ environments, we overload the = notation to
describe an alignment between eager environments E (which are generated in the stackless system
by ExtractEnv) and pairs of lazy lookup environment Z and variable stack X. It is necessary but
not sufficient to require each binding in E to match the results of lookup on Z and vice versa; to
correctly handle higher-order functions, we must also ensure that closures are correctly represented.
The variable stack X in this bisimulation describes the sequence of lookups necessary to reach the
point where a particular closure is defined. We thus write this bisimulation as follows:

Definition 5.8. We write E = Z; X to mean:
e Forallx — (f,E’) inE, Z(X ||[x]) = f and E’ = Z; (X [|[x]).
e Forall Z(X) = f, x — (f,E’) appears in E such that E’ = Z; (X ||[x]).

That is, an eager function lookup aligns with a lazy function lookup if the alignment property
applies recursively to the eager function’s closure. The additional x is used to continue to describe a
path through Z to the point at which the function’s closure is defined. This definition is well-founded
because the first defined function will always have an empty closure, making the bisimulation
property for that function trivial.

Given a means by which environments can be aligned, we can then define the bisimulation
between the stackless and lazy lookup systems:
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V o= {o,...} value sets g = a<xa concrete control flow edges
de De G u= ce te control h
a = clx=x|x=x| annotated clauses {g’ }  conerete control flow graphs
C = Je...] clause stacks

START | Enp
c == {C,...} clause stack sets

Fig. 25. wDDPAc Evaluation Grammar

Definition 5.9. We write L;I = W to mean:

e W = Z|| W’ for the largest possible Z; that is, the first element of W’ is the first application
in W (or W’ is empty).

e [ = W’; that is, the list of unperformed work is the same.

o ExtractEnv(L) = Z;[]; that is, every binding is correctly represented by lazy lookup.

Again the main lemma is bisimulation preservation:

LEMMA 5.10. IfL;I = W then
o if W —! W’ then L;1 —* L';I’ such that L’; I’ = W', and
o if ;1 —'L;I" thenL’; I’ —* L";I” and W —! W”’ such that L"";I" = W”'.

This lemma displays an asymmetry which hints at a difference between the two systems: in-
tuitively, the stackless system takes smaller steps than the lazy lookup system. The only step in
the lazy system is application; the definition clauses which appear as a result, for instance, are
implicitly processed by lazy lookup later and upon demand. In essence, the eager system may need
to take many steps to “catch up” to the lazy system’s state. Likewise, a single step in the eager
system may not align directly with the lazy system, but the eager system will eventually catch up
to the single step taken by the lazy system by processing any definitions, aliases, etc. which the
lazy system deferred.

The initial bisimulation is not immediate but is relatively easy to prove using the above reasoning:
the starting expression may have to take a few steps to catch up to the initial state of the lazy system,
but a bisimulation is provable upon reaching the first application (or the end of the program).

LEMMA 5.11. Foralle, [];e —" L;I such that L;I = W where W = e.

In this lemma note that all e are of form W. The equivalence of the stackless and lazy systems
then follows directly by induction on computation length using the above two lemmas.

5.4 «wDDPAc: A Graph-Based Operational Semantics

We now present wDDPAc, our final operational semantics, and prove it equivalent to the lazy lookup
system just defined. wDDPACc is a graph-based operational semantics which represents expressions
as concrete (runtime) control flow graphs rather than lists with a fixed point of execution. It only
differs from the analysis of Section 4 in two ways: the calling contexts are fixed to be the full call
stack without approximation (the  in the name), and the wiring rule is refined compared to DDPA
to take the current context into account (the additional “c” at the end of «DDPAC).

We define the grammar of wDDPAc in Figure 25. This grammar is structurally very similar to
the analysis. The only difference is that we are using a list o