
1

Higher-Order Demand-Driven Program Analysis

LEANDRO FACCHINETTI, The Johns Hopkins University
ZACHARY PALMER, Swarthmore College

SCOTT SMITH, The Johns Hopkins University

Developing accurate and efficient program analyses for languages with higher-order functions is known

to be difficult. Here we define a new higher-order program analysis, Demand-Driven Program Analysis

(DDPA), which extends well-known demand-driven lookup techniques found in first-order program analyses

to higher-order programs.

This task presents several unique challenges to obtain good accuracy, including the need for a new method

for demand-driven lookup of non-local variable values. DDPA is flow- and context-sensitive and provably

polynomial-time. To efficiently implement DDPA we develop a novel pushdown automaton metaprogramming

framework, the Pushdown Reachability automaton (PDR). The analysis is formalized and proved sound, and

an implementation is described.

CCS Concepts: • Software and its engineering→Automated static analysis; • Theory of computation
→ Formal languages and automata theory;

Additional Key Words and Phrases: functional programming, program analysis, polynomial-time, demand-

driven, pushdown system, flow-sensitive, context-sensitive

ACM Reference format:
Leandro Facchinetti, Zachary Palmer, and Scott Smith. 2019. Higher-Order Demand-Driven Program Analysis.

ACM Trans. Program. Lang. Syst. 1, 1, Article 1 (August 2019), 53 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Developing an accurate but efficient higher-order program analysis is hard. Building on older

first-order abstract interpretations [8], a large array of higher-order analyses have been developed

over the last twenty years [11, 22, 24, 32–35, 44, 51, 52]. Unfortunately, in spite of all the technical

advances these analyses are not commonly employed in compilers for higher-order functional

languages today:MLton [54] and Stalin [45] are among the fewwhole-program optimizing compilers

that use these tools. Even in those cases, the analyses are often used in their less expressive versions.

The primary reason is the difficulty in getting both expressiveness and efficiency in the presence of

higher-order functions due to their significantly greater complexity than the first-order case.

To address this issue, we have developed Demand-Driven Program Analysis (DDPA), a novel

analysis for higher-order programs. We do not (yet) claim that it solves this longstanding problem,

but it takes a fundamentally different approach with fundamentally different trade-offs between

Leandro Facchinetti is supported by a CAPES Fellowship, process number 13477/13-7.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Copyright held by the owner/author(s). Publication rights licensed to Association for Computing Machinery.

0164-0925/2019/8-ART1 $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: August 2019.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1:2 L. Facchinetti, Z. Palmer, S. Smith

expressiveness and performance. Demand-driven program analyses are different than forward-

running analyses in that they only look up values when needed (“on demand”). Demand-driven

analyses were initially developed for first-order programs [10, 20, 21, 38, 40, 42, 43] where they

were shown to achieve good performance/expressiveness trade-offs: if only some of the variables

of the programs need analyzing, the work of analyzing un-needed variables is avoided.

The primary goal of this paper is to extend first-order demand-driven analyses to higher-order

programs. It is well-known that program analysis for languages with higher-order functions is more

difficult since the control flow graph or CFG (“which functions are called where?”) is dependent on

the data flow (“which functions could be in which variables?”) [29, 35], and so data- and control-flow

must be simultaneously computed. A similar issue, so-called structure-transmitted data dependence
[39], also arises in first-order programs: precision on data structure accesses requires combined

control- and data-flow precision. These first-order techniques transfer poorly to higher-order

programs due to a lack of non-local variable alignment, which affects the lookup precision of

variables captured in a higher-order function’s closure.

Here we develop a novel demand-driven higher-order analysis which precisely aligns non-local

variables; that is, the precision of the analysis on local and non-local variables is the same. Ours is

not the first higher-order demand-driven analysis, but previous analyses in this class [14, 37, 47]

do not align non-local variables and so overapproximate their possible values. A lack of non-local

alignment also appears in first-order demand-driven analyses as well as some higher-order forward

analyses [24, 51]; these analyses use a stack to align calls and returns but lose precision on non-local

variables. The non-local alignment technique in this paper is in spirit based on the use of access
links in a compiler runtime. Context-sensitivity, aka polyvariance/polymorphism, can be achieved

solely by call-return alignment since both local and non-local variables are aligned; there is no

need for explicit copying as in e.g. kCFA [44].

In comparing DDPA with a state-of-the-art forward analysis for higher-order programs, we find

that, when the analyses are configured to achieve the same precision on particular questions, their

comparative performance varies. In some cases, demand-driven analysis is faster than the forward

analysis; in others, the relationship is reversed. Similar results were discovered in the space of

first-order analyses [21].

Synopsis of the paper
In Section 2, we give a detailed overview of DDPA by demonstrating how it analyzes several small

examples. In Section 3, we show how we can approximate the values of variables using pushdown

reachability. Although this reachability technique is common among stack-aligning analyses, we

generalize DDPA’s pushdown automaton (PDA) to a novel pushdown reachability automaton (PDR)

which vastly reduces the state-space search size: schemas of PDA states or transitions can be

represented by single PDR states or transitions.

After this overview, we present the theory of DDPA. We formally define the kDDPA analysis

in Section 4; the parameter k here represents the constant number of stack frames the analysis

preserves, in analogy with kCFA. We prove soundness by first showing in Section 5 that a small-

step operational semantics for the λ-calculus is isomorphic to ωDDPAc, a graph-based operational

semantics derived from DDPA which retains an unbounded number of stack frames (ω) and has

perfect contextual precision (c). We believe ωDDPAc is of interest in its own right: it is a novel

presentation of operational semantics for the λ-calculus which never duplicates any expressions.

The isomorphism between these operational semantics relations easily leads to the soundness of

the analysis in Section 6. The decidability of the analysis is presented in Section 7. In Section 8, we

present the theory of PDR systems as an efficient technique for implementing the analysis.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: August 2019.

Higher-Order Demand-Driven Program Analysis 1:3

e ::= [c, . . .] expressions
c ::= x =b clauses
b ::= v | x | x x | x ~p ? f : f | clause bodies

x.ℓ | x <-x | !x
x variables

v ::= f | r | ref x values
f ::= fun x -> (e) functions
r ::= {ℓ =x, . . .} records
p ::= {ℓ, . . .} patterns

Fig. 1. Expression Grammar

In the theoretical presentation we focus on the pure call-by-value λ-calculus to not get over-

whelmed by details; in Section 9 we outline how additional language features may be incorporated.

In Section 10 we evaluate our implementation of this more featureful language in terms of running

time and precision.

We discuss related work in Section 11 and conclude in Section 12.

This paper is extends the original conference paper on DDPA [36] with a PDR-based reference

implementation. Sections 3, 8 and 10 are new. Extended explanations and amore complete theoretical

analysis, including a proof that the unbounded-stack ωDDPAc analysis is a full and faithful λ-
calculus interpreter, is also included.

2 ANALYSIS OVERVIEW
This section informally presents DDPA by example. We begin with a high-level description of

the analysis and roughly sketch how it works on a small program. This description is incomplete:

we will show how the analysis as described is too imprecise, and we will then describe another

feature of the analysis which in fact addresses this imprecision. This process will be repeated

several times until the entire DDPA algorithm has been described. This section does not touch on

implementation; the following Section 3 will describe at a high level how DDPA may be efficiently

implemented.

2.1 A Simple Language
Weuse a simple functional language defined in Figure 1. It is a call-by-value λ-calculus extendedwith
conditionals (via pattern matching), records, and state (via ML-like reference cells). Conditionals

are written x ~p ? f1 : f2: either f1 or f2 is called with x as argument, depending on whether x ’s
value matches the pattern p. We require that programs are closed, and that variable identifiers

are unique (“alphatized”). We use an A-normal form (ANF) [17] intermediate representation, so a

clause c denotes a program point. The operational semantics for this language is straightforward

and deferred to Section 5.1.

2.2 The Basic Analysis
Consider the program in Figure 2 and the steps to construct its Control-Flow Graph (CFG) in

Figure 3.

CFG construction
In higher-order languages, control flow and data flow are intertwined, so the CFG construction

informs the analysis and vice-versa. The initial CFG on Step 1 of Figure 3 is created by inspecting

the program source to determine the blocks determined by the main program and function bodies.

Program points are abbreviated to the identifier they introduce; for example, m=i a becomes m .

Then, to preserve the order of evaluation, we look for call sites we can reach from the beginning

of the program by traversing only immediate program points (those that are not function calls

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: August 2019.

1:4 L. Facchinetti, Z. Palmer, S. Smith

1 i = fun x -> (y = x;);

2 e = {};

3 a = {a = e};

4 b = {b = e};

5 m = i a;

6 n = i b;

Fig. 2. Basic analysis example program

Key Block

x Immediate x Unresolved call site

x Wiring x Call site

Step 1

i e a b m n

ii y ii

Step 2

i e a b m n

ii y ii

x=a Im m=yJm

Step 3

i e a b m n

ii y ii

x=a Im m=yJmx=b In n=yJn

Fig. 3. Basic analysis example CFG

or conditionals). In this example, m satisfies this condition, but n does not: the only path to it

from the start of the program includes m , which is a call site and not an immediate program point.

We say m is active, and we resolve it next. Resolving a call site means adding wiring edges and

nodes, which connect the body of the called function around the call site. The wiring nodes contain

information about the call site, the argument and the return value, for reasons which will become

evident later. The resolution of call site m leads to Step 2; in that step, we write the call site as m

to indicate it is resolved. As m is resolved, the call site n becomes active. So, we resolve n next,

adding more wiring edges and nodes and arriving at Step 3: a complete CFG with no unresolved

call sites.

In general, the call site resolution process is constructing a graph of all potential control flows in

the program as it moves forward through the partial CFGs, which implies there might be multiple

active call sites at any given point, and the analysis is free to choose which to resolve next, as the

final CFG will be the same when all the call sites are resolved regardless of the order in which

steps are taken. (We prove this confluence result as Lemma 7.6.) Because we never remove edges

or nodes from the partial CFGs, they are monotonically growing during the construction, so the

process can happen incrementally. Also, when there are multiple calls to the same function, there

might be multiple wiring edges connecting to it, but the function body itself is not copied, and

there can only be one pair of wiring edges and nodes between a particular call site and function

body. This guarantees a polynomial upper bound on CFG size. It is possible that the analysis has

to revisit a previously resolved call site and resolve it again when more functions and arguments

become available to it from wirings added elsewhere in the CFG – the construction is complete

when this process reaches a least fixed point. All examples in the remainder of this section start

with a complete control-flow graph built with this process.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: August 2019.

Higher-Order Demand-Driven Program Analysis 1:5

Lookup
To resolve a call site, DDPA has to know which functions were called at that point; how does this

lookup work? For example, when we resolved the call site m between Steps 1 and 2, how did DDPA

know that i was the appropriate function to wire? In a typical forward-running program analysis,

abstract stores would be propagated forward along the CFG and the values of function variables

would be established from those stores. Here, we take a different approach.

The lookup began with the question “what are the possible values of i at m ?” To find the answer,

DDPA starts traversing the partial CFG backward with respect to control flow, by following the

arrows opposite to where they are pointing in the diagram. It immediately finds b , which contained

no information about our variable of interest, so DDPA reformulated our lookup question into

another that must have the same answer: “what are the possible values of i at b ?” We then follow

another arrow in reverse and found a , which also contains no information about i and causes

DDPA to reformulate the lookup question again. The same happens on the next step, when we reach

e . Finally, on the next iteration, DDPA finds the definition of i , at which point it concludes the

obvious: “the possible values of i at i include the function fun x ->...” This answer percolates
back to our original question, because we carefully constructed the intermediary questions so that

their answers would be the same: “the possible values of i at m include the function fun x ->...”
This lookup result is why we wire that function around m .

A similar process occurs when resolving call site n between Steps 2 and 3. Again, we have to

lookup the possible values of variable i, but this time we start from a different perspective, n .

We look at the arrows pointing at n backward, and find two nodes: m and m=yJm . We could

non-deterministically explore both paths, but it would be redundant: the function body does not

affect the definition of the (immutable) variable i, so information discovered from exploring it is

equivalent to that discovered by skipping over it and moving to m . Thus, we proceed by doing the

latter and find ourselves asking the same question as before: “what are the possible values of i at
m ?” We already know the answer from the previous step, so can reuse it to conclude that “the

possible values of i at n include the function fun x ->...” Thus, we may add the corresponding

wiring edges and nodes.

The CFG construction and the lookup process are carefully ordered by the active nodes to preserve
evaluation order, so the answer to a lookup question is always complete and never changes. This

allows us to visit nodes with a particular lookup question only once and reuse that answer later.

Also, the analysis is naturally flow-sensitive, because lookup questions are relative to particular

program points.

Context Sensitivity
Lookups are not restricted to finding which functions could be called at a call site – it is possible to

query the value of any variable in scope. For example, let us consider one more lookup: n from the

end of the program in the complete CFG (Step 3). On the first step we look at the arrows in reverse

from the end of the program and find two nodes, n and n=yJn . In our previous example we had

skipped over a function call because it had not affect the result, but this time it does, so, instead of

skipping to n , we explore the function call by taking the path to n=yJn . At this point, we follow

our lookup process, changing the lookup question to another one with the same answer, and this

new question is not only a change in perspective, but also a change in subject. The wiring node

contains the information that n is y, so we now ask “what are the possible values of y at n=yJn ?”

The next step is similar: we find that y=x and change our lookup subject to x at y .

However, now we encounter a problem: there are two nodes we can follow in reverse from y ,

x=a Im and x=b In , and if we follow x=b In , then we eventually find the right answer: “{b=e} is

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: August 2019.

1:6 L. Facchinetti, Z. Palmer, S. Smith

a possible value for n by the end of the program;” but if we follow x=a Im , then we discover that

“{a=e} is another possible value for n by the end of the program!” Programmers looking at the

program know that actual execution would never output the latter, because the execution path

leading to it does not make sense: it includes x=a Im (the entrance node for m) and n=yJn (the

exit node for n , which means a function is called at m and returns to n . The lookup described

thus far does not rule out this misalignment and non-deterministically explores all possible paths,

over-approximating the answer and losing precision.

To resolve this, we introduce another component to the lookup process: the context stack. The
lookup question changes to the form “what are the possible values for variable x at p with context

stack [a, b, c].” We push the call site name to the context stack when we visit an exit node

for a function call (in reverse), and we only visit the entrance node for which we can pop the

corresponding call site. For example, when we visit n=yJn , we push n to the context stack, and,

when we are at y , we only follow the path to x=b In and discard the path to x=a Im , because n is

on the top of the stack. Then the final result will be exact: “only {b=e} is a possible value for n by

the end of the program.”

Numerous higher-order analyses have been developed which show how higher-order functions

can be analyzed, and some of those analyses also include call-return alignment mechanisms

[11, 19, 24, 37, 51]. But, the call-return alignment in these analyses is not fully solving the higher-

order call-return alignment problem: they are more or less porting the first-order notion of call

return alignment over and, since first-order programs have no non-locals, these higher-order

analyses only align local variables. For example, PDCFA [24] and CFA2 [51] only align the so-called

stack references (locals), not the so-called heap references (non-locals). As a result, forward higher-

order analyses cannot rely solely upon stack alignment to achieve the effect of polymorphism; an

additional polymorphism mechanism must be employed. This additional polymorphism machinery

often generates redundant work (e.g. in cases where no non-local variables were used and call-

return alignment would be sufficient) but must be conservatively applied to maintain precision.

A key contribution of our previous work [36] is a method for alignment of non-locals in call-

return alignment via the context stack discipline, which also makes DDPA a context-sensitive

(polyvariant) analysis. This feature is commonly achieved by copying function bodies – kCFA
being the canonical example [35] – but, in DDPA, context-sensitivity relies solely on call-return

alignment. The subtleties of how this works are covered next.

2.3 Non-Local Variable Lookup
The lookup process described so far only included local variables (stack references). We now

address non-local variables (heap references). Consider the program in Figure 4. We build its CFG

as described in the previous section (Figure 5) and start looking up for the values of r from the end

of the program. There is only one call to each function in the program, so we ignore the context

stack and the call-return alignment issue for the rest of this example. We first move to r=bJr ,

changing the lookup subject to b; then we go to b , changing the lookup subject to x. At this point,
the lookup process described so far would fail to abstract the notion of lexical scoping and instead

look the for non-local variable in the context of the call site, as opposed to the scope in which the

function was defined: it would skip y=e Ir , p , e and k , because they do not immediately affect

the value of our subject x, reach the beginning of the program without finding a value, and fail.

The search process needs to be modified to take lexical scoping rules of non-local variables into

account.

The solution to this issue is inspired by access links used in compilers for higher-order functions.

When visiting y=e Ir in the lookup above, we notice that x is not the function argument, so it

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: August 2019.

Higher-Order Demand-Driven Program Analysis 1:7

1 k = fun x -> (

2 a = fun y -> (

3 b = x;

4);

5);

6 e = {};

7 p = k e;

8 r = p e; k e p r

kk a kk aa b aa

x=e Ip p=aJp y=e Ir r=bJr

Fig. 4. Non-local variable lookup ex-
ample program

Fig. 5. Non-local variable lookup example CFG

must be a non-local variable which was in scope at the function definition, not its use. To properly

abstract the notion of lexical scoping we must defer the current lookup, find the program point

defining the function we are exiting (in reverse) and then resume from there. In our example DDPA

executes this by suspending the lookup for x and starting a subordinate lookup for the function we

are exiting, p.
The subordinate lookup for p follows the rules we discussed thus far, entering p=aJp . The

subject of the lookup changes to a, which we find on the next step at a . This is the definition of

the function we were looking for, so we can resume the deferred lookup of x from there: we move

to x=e Ip , change the subject to e, move to e and finally find the answer.

The function definition in the subordinate lookup could be a non-local itself, so, in general, it

is necessary to chain on the above idea, akin to access links. This requires the introduction of a

second stack, besides the context stack discussed above, which we call the lookup stack. The lookup
stack contains the deferred lookups, and the lookup process is complete only when the lookup

stack is empty. There are other uses for the lookup stack in DDPA; for example, to lookup a record

projection, the analysis has to lookup the record and then the value under the projected key. DDPA

keeps the projected key in the lookup stack from the program point containing the projection until

the record is found. Because of this generality, we also refer to the lookup stack as a continuation
stack.

2.4 Function Call Lookup
The lookup process described thus far still loses precision on function calls. Consider the program

in Figure 6, the corresponding CFG in Figure 7, and a lookup for q from the end of the program

with an empty context stack. On the first step, DDPA visits q=bJq , changes the lookup subject to b,
and finds three possible paths to continue. The first is b , which it discards because it would mean

skipping over a call site that contains information about the lookup subject. On the second path, it

visits b=dJb , d , and finds the expected answer: {h=e}. But, on the third path, it visits b=cJb , c ,

and finds an imprecise answer: {g=e}.
This third path does not make sense during run-time: it requires the q call site to pass h as

the value of f but then expects f to be g at b . The call-return alignment discipline we described

thus far is not enough to eliminate this path because we reached the answer at c by visiting only

immediate and exit nodes, so we pushed call sites to the context stack but never visited entrance

nodes to try (and fail) pop them.

The solution here is to start a subordinate lookup for operand at the call site before visiting an

exit node and only proceed if the result includes the pertinent function. This subprocess shows that

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: August 2019.

1:8 L. Facchinetti, Z. Palmer, S. Smith

1 e = {};

2 a = fun f -> (b = f e;);

3 g = fun m -> (c = {g = e};);

4 h = fun n -> (d = {h = e};);

5 p = a g;

6 q = a h;

e a g h p q

aa b aa

gg c gg hh d hh

m=e Ib b=cJb n=e Ib b=dJb

f=g Ip p=bJp f=h Iq q=bJq

Fig. 6. Function call lookup example program Fig. 7. Function call lookup example CFG

our call-return alignment discipline aligns not only the entrance and exit nodes, but also arguments,

even those that are higher-order functions. In our example, before we visit b=cJb we have to verify

whether g can flow into f. This is not the case, because q is on the top of the context-stack, and the

call-return alignment discipline fails when trying to pop p at f=g Ip , so we discard this entire path.

But the condition is satisfied for b=dJb , part of the path leading to the more exact answer.

2.5 Recursion and Decidability
We now address how the analysis handles recursive functions, which induces cycles in the CFG.

A lookup based on graph traversal as we have thus far described would never end, following the

cycle indefinitely. Consider the program in Figure 8, the corresponding CFG in Figure 9, and a

lookup for the values of r by the end of the program with an empty context stack. DDPA starts by

visiting r=aJr , and then a=aJa . From there, it can repeatedly follow the cycle back around a=aJa

and never reach an answer, which is unsurprising as the run-time for this program also does not

terminate. Moreover, the lookup process described thus far includes two stacks, the context stack

and the lookup stack, and with them we could simulate the tape of a Turing Machine, so it looks

very unlikely to be undecidable with two un-finitized stacks. We concretely prove an undecidability

result in Section 5: we define ωDDPAc, a two-stack-unbounded analysis, and prove it is a complete

interpreter for the call-by-value λ-calculus.

1 o = fun x -> (a = x x;);

2 r = o o;

o r

oo a oo

x=o Ir r=aJr

x=x Ia a=aJa

Fig. 8. Recursion example program Fig. 9. Recursion example CFG

To make lookup decidable, we have to start by artificially bounding one of these stacks: if we do

it for the lookup stack, then we impact the precision on non-local variables, record projection, and

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: August 2019.

Higher-Order Demand-Driven Program Analysis 1:9

↓n
n=yJn

⇓n,↑n,↓y
y

↑y,↓x
x=b In

⇑n,↑x,↓b
m

↑b,↓b
b

↑b

↓m

n

↑m,↓m

m=yJm
⇓m,↑m,↓y

↑y,↓x

x=a Im
⇑m,↑x,↓a↑a,↓a

a
↑a

Fig. 10. A two-stack PDS encoding traversals for lookups of m and n from the end of the program in Figure 3.
Thick arrows represent pushes (⇓) and pops (⇑) to the context stack, and thin arrows represent pushes (↓) and
pops (↑) to the lookup stack.

↓n
n=yJn

↑n,↓y
y

↑y,↓x
x=b In

↑x,↓b
m

↑b,↓b
b

↑b

↓m

n

↑m,↓m

m=yJm
↑m,↓y

y
↑y,↓x

x=a Im
↑x,↓a↑a,↓a

a
↑a

[]
[n][n][][][]

[][m][m][][]

Fig. 11. A one-stack PDS which approximates the two-stack PDS by finitely abstracting the context stack
and embedding it in the nodes.

so forth; and a bounded context stack would impact context sensitivity. We choose the latter. Any

systematic finitization technique of the context stack would work, and in DDPA we use one of the

simplest possible: we truncate the stack to a fixed maximum size of k , in the spirit of kCFA [44].

This characterizes kDDPA as a family of program analyses, parameterized over the choice of k .
Other finitization techniques lead to different trade-offs with respect to precision and performance,

but they are orthogonal to the demand-driven aspects that we are exploring in this work.

In our example, kDDPA would follow the loop around a=aJa a maximum of k times, at which

point it would exhaust the context stack. When this happens, a subordinate lookup question will

be identical to a lookup question already underway: “what are the possible values for a at a=aJa

with context stack [a, a, ...]?” In this case, the subordinate lookup immediately returns the

empty set, because there are no other paths contributing to the answer.

Reachability
We described the lookup process in terms of a traversal of the CFG, but this is not how the

algorithm is actually implemented. To realize the analysis in a way that promotes the reuse of

previously computed answers, lookup is encoded in terms of Pushdown System (PDS) reachability

questions [6]. The answer to these questions, in turn, are lazily calculated with a novel construction

called Pushdown Reachability automaton (PDR). The next section describes these automata and

gives an overview of how DDPA can be efficiently implemented.

3 IMPLEMENTATION OVERVIEW
We now give a high-level overview of how lookup in the previous section is efficiently implemented.

3.1 The Basic Analysis – Revisited
In the previous section we introduced lookups as (reverse) traversals on the CFG, but the cycles

induced by recursive functions could be traversed indefinitely, rendering this intuition unrealizable.

DDPA’s solution to this issue comes in three parts: (1) encode the CFG traversals in terms of a

two-stack pushdown automaton; (2) derive a one-stack pushdown automaton which approximates

it; and (3) interpret lookup queries as reachability questions on this automaton, a task known to be

decidable [6].

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: August 2019.

1:10 L. Facchinetti, Z. Palmer, S. Smith

To begin with, we construct a two-stack pushdown automaton (two-stack PDA) corresponding

to the CFG traversals from Section 2: nodes in this PDA correspond to nodes in the CFG, edges

correspond to transitions allowed by following control flow in reverse, and edge annotations

correspond to stack manipulations – thick arrows (⇓/⇑) are related to the context stack, and thin

arrows (↓/↑) to the lookup stack. Since we are searching backwards through the program, we

encounter function returns before the calls and so the context stack stack operations are pushing
returns and popping calls. (This can take some getting used to as it is the exact opposite of the

program run-time stack operations.) The edge to the start state in the PDA represents the start of

the traversal in the CFG by pushing the query subject to the lookup stack, and immediate nodes

are accepting states. The first outstanding characteristic of this PDA, which is also true of all other

automata we will encounter in this paper, is that its input alphabet is empty, because our purpose

is not to recognize a string but to reason about the stack discipline. Automata of this kind are called

pushdown systems (PDS) [6].
As an example, consider the PDS in Figure 10, which illustrates lookups of n and m from the end

of the given program in the CFG from Figure 3. The edge labeled ↓n on the upper-right corner

starts the traversal looking for n from the end of the program, the node n=yJn represents visiting

that node in the CFG traversal, and the node b is an accepting node. The main row on the top of

the PDS in the figure corresponds to the complete traversal caused by looking n up from the end of

the program, and the row below corresponds to the traversal caused by looking m up from the end

of the program. The automaton permits sharing the nodes that are identical in both traversals, for

example, y . The paths from ↓n to b and from ↓m to a are realizable, but from ↓n to a and from

↓m to b are not, because they make incompatible choices when popping from the context stack,

preserving the call-return alignment described in Section 2.2.

It is well-known that a two-stack PDA is equivalent in power to a Turing Machine, so we are

clearly flirting with danger here, and concretely we show in Section 5 that ωDDPAc, the two-stack-
unbounded analysis, is Turing-complete and thus undecidable. So, we must convert the two-stack

PDS into something strictly weaker to make the analysis computable. DDPA’s approach is to finitely

abstract the context stack configurations and embed them in the PDS nodes, and, if multiple context

stack configurations can occur at the same CFG node, create multiple versions of that node in the

PDS to distinguish them. Any abstraction that bounds the context stack into a finite space suffices,

and different choices have different effects on the analysis’ capacity to align calls and returns. For

simplicity DDPA uses a very basic abstraction technique, similar in spirit to the contour treatment

in kCFA [44]: truncate the context stack beyond length k to create a family of increasingly precise

kDDPA analyses. See Figure 11 for the 1-stack PDS for our running example, in which the node y

is duplicated and differentiated with two context stacks because we choose k = 1. As illustrated by

b , for example, node sharing between paths can still occur in this PDS, but it is more rare because

the traversals have to visit the common node with the same context stack configuration.

Both the CFG and PDSs constructions can be incremental, responding to the demands of the

query, because the information discovered is never invalidated at later steps. Moreover, cycles in

the CFG induce cycles in the PDSs, but their construction is finite and decidable because both CFG

and PDSs grow monotonically and in tandem, and nodes and edges cannot be repeated.

Finally, after constructing the PDS, we can use it to answer lookup questions by encoding them

in terms of reachability questions of the form “which accepting states (immediate nodes) can we

reach from this given start state with an empty lookup stack (the context stack embedded in the

node might be non-empty)?” In our example, the accepting state b is reachable when starting

from ↓n, but a is not.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: August 2019.

Higher-Order Demand-Driven Program Analysis 1:11

In the literature, several different approaches have been used to refine program analyses via

aligning calls and returns: context-free language (CFL) reachability [40], set constraint solving

[25], PDA reachability [3], and logic programming specifications [42] can all be used. The DDPA

implementation is not aiming for perfect alignment of calls and returns like these analyses, because

it instead focuses on perfect access of non-local variables, and uses the PDS stack for that purpose;

the call stack is always a finite approximation in the nodes of the PDS and so can be viewed more

as having a stack-free finite automaton representation in DDPA. This follows the dominant stream

of higher-order analyses inclluding kCFA and its many refinements – the k represents the fixed

finite length of the call stack. As mentioned above there are many other possibilities for abstraction

other than the simple one used here, for example in code with no recursive non-locals we could in

principle swap and make the call stack arbitrary and the non-locals stack of bounded size. Some

higher-order forward analyses opt for perfect precision on the call stack but then lose precision on

non-locals [19, 24, 51]. The notion of finding good trade-offs between data- and control-precision

is studied in [55].

The above analysis aligns both local and non-local variables, and it is achieving the full effect of

kCFA-style polymorphism; this is apparent in the precision of the above example. So, while the

analysis algorithm is closely related to the CFL-reachability analyses, the effect in the higher-order

space is more closely related to polyvariance than stack alignment.

Finitization of the call stack is not an optimal solution: there are exponentially many finitized

call stacks of length k , so the algorithm is exponential as k grows.
1
Also, this approach will never

be able to keep perfect call-return alignment for recursive programs on any k . Future work is to

improve on this approximation method.

3.2 Pushdown Reachability Automata
kDDPA depends on solving pushdown reachability, for which the standard algorithm is to perform

an edge closure [6]: continually replace adjacent matching push and pop edges with a single

transitive no-op edge. For any valid path in the original automaton, after closure there will be a

path consisting solely of no-op edges. Pushdown reachability is decidable in polynomial time [6],

which is a pleasant property, and the proof-of-concept implementation of DDPA [36] used this

algorithm to perform variable lookup. But, while straightforward, this approach can be slow in

practice when the number of states and edges is large. Moreover, most of them do not affect the

lookup result, so we define a novel “pushdown reachability” (PDR) automaton, partly inspired by

PDCFA [24], to accelerate reachability queries.

Observe that, over the course of kDDPA, the CFG grows monotonically. As a result, the variable

lookup PDS (and its closure) exhibits similar monotonic growth. As long as we grow the PDS in

tandem with the CFG throughout the course of the analysis, we can use the same data structure for

all variable lookups and avoid duplicating PDA closure work. Moreover, we can identify structural

similarities between edges and compress them to reduce the size of the automaton representation.

These monotonic properties and this compression technique will be crucial in our implementation

of a tractable analysis.

We demonstrate this different form of PDS using the code in Figure 12. Consider the task of

looking up the values of x and y from the end of the program, using the same PDS each time. The

PDS for this program appears in Figure 13, and PDR appears in Figure 14. The only difference

between these automata is that the PDR (Figure 14) contains a new edge annotation. Consider, for

instance, the edge labeled “↑↓¬y”. The PDR treats this edge as a no-op as long as the top of the

1
This is different from kCFA, which is exponential in the program size whenever k ≥ 1 [50].

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: August 2019.

1:12 L. Facchinetti, Z. Palmer, S. Smith

1 x = {};

2 y = {};

3 z = {};

↓x
z

↑x,↓x

y

↑x,↓x

x

↑x

↓y

↑y,↓y↑y

↓x
z

↑↓ ¬z
y

↑↓ ¬y

x

↑x

↓y

↑y

Fig. 12. PDR example Fig. 13. PDR example: PDS Fig. 14. PDR example: PDR

ê ::= [ĉ, . . .] expressions

ĉ ::= x̂ = ˆb clauses
ˆb ::= ˆf | x̂ | x̂ x̂ bodies
x̂ ::= (identifiers) variables

v̂ ::= ˆf values
ˆf ::= fun x̂ -> (ê) functions

V̂ ::= {v̂, . . .} value sets
â ::= ĉ | annotated clauses

x̂
Îc
= x̂ | x̂

Jĉ
= x̂ | Start | End

д̂ ::= â << â control flow graph edges

Ĝ ::= {д̂, . . .} control flow graphs

X̂ ::= [x̂, . . .] variable lookup stacks

Fig. 15. Analysis Grammar Abstract Elements

stack is any variable other than y. This means, for example, that the path

↓y
−−→

↑↓¬z
−−−→ z

↑y
−−→ y is

valid in this PDR but the path

↓y
−−→

↑↓¬z
−−−→ z

↑↓¬y
−−−→ y is not. These so-called dynamic pop edges

come in a variety of forms and represent PDS transition schemas; the single ↑↓¬z edge, for instance,

replaces an appropriate pop/push edge pair for every variable in the program (excepting z) – the

pop immediately followed by a push of the same non-z subject amounts to a no-op.

In general, the PDS which embodies the above lookup algorithm contains patterns of states and

edges which are dictated by the execution semantics of the language. We use this and other forms

of dynamic pop edges to represent these patterns directly rather than encode them, leading to

a much smaller automaton and therefore faster lookup process. In Section 8, we generalize this

notion of dynamic pop edge and use them to efficiently implement a form of primitive computation

for the more complex rules of the analysis.

4 THE ANALYSIS
In this section, we formalize the DDPA analysis. To simplify presentation, we restrict ourselves

to an A-normalized [17] lambda calculus; we outline how additional language features can be

introduced in Section 9. The operational semantics of the language is eager and standard, and we

postpone it and the soundness proof to Section 6.

The grammar constructs needed for the analysis appear in Figure 15. Items on the left are just

the hatted versions of the corresponding program syntax. Functions are the only data type in

the simplified language. In the analysis, closure environments are subsumed by our treatment of

non-local variables; function values are then represented in the abstract by their bodies alone. Recall

from above that we require variables to be bound uniquely (so-called “alphatised” or “uniquized”

variables). We also have the common requirement that analyzed expressions are closed: a variable

is not used until after a clause in which it is bound.

Edges д̂ in a control flow graph Ĝ, are written â << â′ and mean clause â happens right before

clause â′. New clause annotations Îc /Jĉ are used to mark the entry and exit points for functions.

The Start node is a special node placed at the very start of the program, and similarly for End. These

nodes are needed if any wirings are placed around the first or last program clause.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: August 2019.

Higher-Order Demand-Driven Program Analysis 1:13

Definition 4.1. We use the following notational sugar for control flow graph edges:

• â1 << â2 << . . . << ân abbreviates {â1 << â2, . . . , ân−1 << ân}.
• â′ << {â1, . . . , ân} (resp. {â1, . . . , ân} << â′) denotes {â′ << â1, . . . , â

′ << ân} (resp. {â1 <<
â′, . . . , ân << â′}).

• We overload â <� â′ to mean â << â′ ∈ Ĝ for some graph Ĝ understood from context.

Definition 4.2. Let RV(ê) = x̂ if ê = [ĉ, . . . , x̂ = ˆb]. That is, x̂ is the return variable of ê .

Definition 4.3. The initial embedding of an expression into a graph, �Embed([c1, . . . , cn]), is the
graph Ĝ = Start << ĉ1 << . . . << ĉn << End, where each ĉi = ci .

This initial graph is just the linear sequence of clauses of the main program.

We are using standard notation [x̂1, . . . , x̂n] for lists and | | for list append.

4.1 Lookup
As was described in Section 2, the analysis will search back along << edges in the graph Ĝ to find

the definitions of variables it needs. We now define this lookup function.

4.1.1 Context Stacks. The definition of lookup proceeds with respect to a current context stack
Ĉ . The context stack is used to align calls and returns to rule out cases of looking up a variable

based on a non-sensical call stack, and was described in Section 2.2.

The proof of decidability relies upon bounding the depth of the call stack. We first define a

general call stack model for DDPA, and in Section 7 below we instantiate the general model with a

fixed k-depth call stack version notated kDDPA; this is a simple bounding strategy and our model

can in principle work with other strategies.

Definition 4.4. A context stack model Σ = ⟨Ĉ, ϵ, Push, Pop,MaybeTop⟩ obeys the following:

(1) Ĉ is a set. We use Ĉ to range over elements of Ĉ and refer to such Ĉ as context stacks.
(2) ϵ ∈ Ĉ .
(3) Push(ĉ, Ĉ) and Pop(Ĉ) are total functions returning context stacks. Pop(ϵ) = ϵ .
(4) MaybeTop(ĉ, Ĉ) is a predicate. MaybeTop(ĉ, Push(ĉ, Ĉ)) and MaybeTop(ĉ, ϵ) hold.
(5) If MaybeTop(ĉ, Ĉ) then MaybeTop(ĉ, Pop(Push(ĉ ′, Ĉ))).

Generally, the context stack is an approximation of the program’s runtime call stack. The Push

and Pop function derive new context stacks upon calls and returns and the MaybeTop predicate

determines whether the top of the runtime call stack may be a call from site ĉ . Models err on the

side of overapproximating MaybeTop for soundness. The distinguished context stack ϵ signifies a lack
of any context information (and not an empty call stack): popping from ϵ yields ϵ and MaybeTop(ĉ, Ĉ)
is always true for any call site ĉ .
A natural family of context stacks is one which retains up to k top stack frames; to also admit

the unbounded case we let k range over Nat ∪ ω for ω the first limit ordinal. We let [ĉ1, . . . , ĉn]⌈k
denote [ĉ1, . . . , ĉm] form = min(k,n).

Definition 4.5. For every k ∈ Nat ∪ ω, we define context stack model Σk to have Ĉ contain the

set of all lists of up to length k of clauses ĉ occurring in the program. We define the remainder of

Σk as follows:

• ϵ = []

• Push(ĉ ′, [ĉ1, . . . , ĉn]) = [ĉ ′, ĉ1, . . . , ĉn]⌈k
• Pop([ĉ1, . . . , ĉn]) = [ĉ2, . . . , ĉn] if n > 0; Pop([]) = [].

• MaybeTop(ĉ ′, [ĉ1, . . . , ĉn]) is true if ĉ
′ = ĉ1 or if n = 0; it is false otherwise.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: August 2019.

1:14 L. Facchinetti, Z. Palmer, S. Smith

We use the term “kDDPA” to refer to DDPA with context stack model Σk .

As above, note that ϵ = [] reflects a lack of knowledge of the call stack and not necessarily a lack

of stack frames.

4.1.2 Lookup stacks. Lookup also proceeds with respect to a lookup stack X̂ . The topmost variable

of this stack is the variable currently being looked up. The rest of the stack is used to remember

non-local variable(s) we are in the process of looking up while searching for the lexically enclosing

context where they were defined.

Unlike the context stack above, the lookup stack is unbounded: the process of looking up a

non-local could trigger another non-local lookup of a non-lexically-enclosing function, so there is

no lexical upper bound on the depth of this stack in the general case. Though no finite bound exists

on this stack’s depth, every lookup stack is still finite in size.

Also unlike the context stack, there is no graceful way to approximate when lookup stack

information is lost. So, we must preserve the whole stack in the analysis. Section 2.3 gave motivation

and examples for non-local variable lookup.

4.1.3 Defining the lookup function. Lookup finds the value of a variable starting from a given

graph node. Given a control flow graph Ĝ , we write Ĝ(X̂ , â0, Ĉ) to denote a lookup using stack X̂ in

Ĝ relative to graph node â0 with context Ĉ . For instance, a lookup of variable x̂ from program point

â with unknown context would be written Ĝ([x̂], â, ϵ). Note that this refers to looking for values of

x̂ upon reaching program point â but before that point is executed (much like the convention of

interactive debuggers); we are looking for a definition of x̂ in the predecessors of â but not within â
itself.

Definition 4.6. Given control flow graph Ĝ , let Ĝ(X̂ , â0, Ĉ) be the function returning the least set

of values V̂ satisfying the following conditions given some â1 <� â0:

(1) Value Discovery

If â1 = (x̂ = v̂) and X̂ = [x̂], then v̂ ∈ V̂ .

(2) Value Discard

If â1 = (x̂1 = ˆf) and X̂ = [x̂1, . . . , x̂n] for n > 0, then Ĝ([x̂2, . . . , x̂n], â1, Ĉ) ⊆ V̂ .

(3) Alias

If â1 = (x̂ = x̂ ′) and X̂ = [x̂] | | X̂ ′
then Ĝ([x̂ ′] | | X̂ ′, â1, Ĉ) ⊆ V̂ .

(4) Function Enter Parameter

If â1 = (x̂
Îc
= x̂ ′), X̂ = [x̂] | | X̂ ′

, and MaybeTop(ĉ, Ĉ), then Ĝ([x̂ ′] | | X̂ ′, â1, Pop(Ĉ)) ⊆ V̂ .

(5) Function Enter Non-Local

If â1 = (x̂ ′′ Îc
= x̂ ′), X̂ = [x̂] | | X̂ ′

, x̂ ′′ , x̂ , ĉ = (x̂r = x̂f x̂v), and MaybeTop(ĉ, Ĉ), then

Ĝ([x̂f , x̂] | | X̂
′, â1, Pop(Ĉ)) ⊆ V̂ .

(6) Function Exit

If â1 = (x̂
Jĉ
= x̂ ′), X̂ = [x̂] | | X̂ ′

, and ĉ = (x̂r = x̂f x̂v), then Ĝ([x̂ ′] | | X̂ ′, â1, Push(ĉ, Ĉ)) ⊆ V̂ ,

provided fun x̂ ′′ -> (ê) ∈ Ĝ([x̂f], ĉ, Ĉ) and x̂
′ = RV(ê).

(7) Skip

If â1 = (x̂ ′′ =b), X̂ = [x̂] | | X̂ ′
, and x̂ ′′ , x̂ , then Ĝ(X̂ , â1, Ĉ) ⊆ V̂ .

Note this is a well-formed inductive definition by inspection. Each of the clauses above represents

a different case in the reverse search for a variable. We now give clause-by-clause intuitions.

(1) We finally arrived at a definition of the variable x̂ and so it must be in the result set.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: August 2019.

Higher-Order Demand-Driven Program Analysis 1:15

(2) The variable x̂1 we are searching for has a function value and, unlike clause (1), there are

more variables on the stack. This occurs because clause (5), described below, needed to look

up the next variable, x̂2, in the place where x̂1 was defined (as in non-local lookup). Now that

we have found x̂1, we remove it from the lookup stack and resume the lookup of x̂2.
(3) We have found a definition of x̂ but it is defined to be another variable x̂ ′

. We transitively

switch to looking for x̂ ′
.

(4) We have reached the start of the function body and the variable x̂ we are searching for was

the formal argument x̂ ′
. So, continue by searching for x̂ ′

from the call site. The MaybeTop

clause constrains this stack frame exit to align with the frame we had last entered (in reverse).

(5) We have reached the beginning of a function body and did not find a definition for the

variable x̂ . In this case, we switch to searching for the clause that defined this function body,

which leads us to push x̂f onto the lookup stack. Once the defining point of x̂f is found, we

will pop it and resume looking for x̂ (see clause (2)). The MaybeTop clause constrains the stack

frame being exited to align with the frame we had last entered (in reverse).

(6) We have reached a return copy which is assigning our variable x , so to look for x we need

to continue by looking for x ′
inside this function. Push ĉ on the stack since we are now

entering the body (in reverse) via that call site. For a more accurate analysis, the “provided”

line additionally requires that we only “walk back” into function(s) that could have reached

this call site; so, we launch a subordinate lookup of x̂f and constrain â1 accordingly.
(7) Here the examined clause is not a match so the search continues at any predecessor node.

Note this will chain past function call sites which did not return the variable x̂ we are looking

for. This is sound in a pure functional language; when we address state in Section 9.4, we

will enter such a function to verify an alias to our variable was not assigned.

4.2 Abstract Evaluation
We are now ready to present the single-step abstract evaluation relation which incrementally adds

edges to the control flow graph. This system has some parallels with a graph-based notion of

evaluation [27, 53], but in our system function bodies are never copied – a single body is shared.

4.2.1 Active nodes. While evaluation is abstract and graph-based, it shares some features with

standard evaluation: there is an evaluation context [16] of the already-evaluated “expression” (here

a graph) and we need to next evaluate the current “redex”, which here we call the active node. In
particular, only nodes with all previous nodes wired-in can fire.

Definition 4.7. �Active?(â′, Ĝ) iff path Start << â1 << . . . << ân << â′ appears in Ĝ such that no âi
is of the form x̂ = x̂ ′ x̂ ′′

. We write �Active?(â′) when Ĝ is understood from context.

4.2.2 Wiring. Recall from Section 2 how function application required the concrete function

body to be “wired” directly in to the call site node, and how additional nodes were added to copy in

the argument and out the result. The following definition accomplishes this.

Definition 4.8. Let �Wire(ĉ ′, fun x̂0 -> ([ĉ1, . . . , ĉn]) , x̂1, x̂2) =

Preds(ĉ ′) << (x̂0
Îc ′
= x̂1) << ĉ1 << . . . << ĉn << (x̂2

Jĉ ′
= RV([ĉn])) << Succs(ĉ ′)

where Preds(â) = {â′ | â′ <� â} and Succs(â) = {â′ | â <� â′}.

ĉ ′ here is the call site, and ĉ1 << . . . << ĉn is the wiring of the function body. The Preds/Succs

functions reflect how we simply wire to the existing predecessor(s) and successor(s).

Next, we define the abstract small-step relation −̂→
1

on graphs. With the above preliminaries, this

is easy to define: for each reachable function application with a particular function and argument,

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: August 2019.

1:16 L. Facchinetti, Z. Palmer, S. Smith

Application

ĉ = (x̂1 = x̂2 x̂3) �Active?(ĉ, Ĝ) ˆf ∈ Ĝ([x̂2], ĉ, ϵ) v̂ ∈ Ĝ([x̂3], ĉ, ϵ)

Ĝ −̂→
1 Ĝ ∪ �Wire(ĉ, ˆf , x̂3, x̂1)

Fig. 16. Abstract Evaluation Rule

we add wiring nodes to copy the argument into the function and copy its return value to the call

site.

Definition 4.9. We define the small step relation −̂→
1

to hold if a proof exists in the system in

Figure 16. We write Ĝ0 −̂→
∗ Ĝn to denote Ĝ0 −̂→

1 Ĝ1 −̂→
1 . . . −̂→1 Ĝn .

The A-normalized lambda calculus only requires an application rule, and languages with addi-

tional control flow constructions (such as the language of Section 9) will need additional rules.

The next sections show the formal properties of the above analysis. Section 5 proves undecidability

with a non-finite context stack model. Section 6 demonstrates the soundness of DDPA with respect

to a standard small-step operational semantics, while Section 7 proves DDPA to be decidable by

reducing the lookup procedure to a PDS reachability problem.

5 A GRAPH-BASED OPERATIONAL SEMANTICS
In this and the following sections we show the soundness of DDPA. We do so in a fashion common

to higher-order program analyses [30, 44, 51]: we prove a standard operational semantics equivalent

to a non-standard one and then show the analysis is a sound abstract interpretation [8] of the

non-standard semantics. For clarity of presentation, our translation of the operational semantics

moves through two intermediate systems as illustrated in Figure 17.

λ-calculus stackless lazy lookup ωDDPAc

kDDPAc

ωDDPA

kDDPA

Sec. 5.1 Sec. 5.2 Sec. 5.3 Sec. 5.4

Sec. 6.1

Sec. 6.2
concrete system
abstract system

Fig. 17. Soundness Proof Systems

The operational semantics we start with is closure-based; we take this as ground truth as it is

well-known to be equivalent to other operational semantics for the call-by-value λ-calculus. The
target non-standard operational semantics, which we term ωDDPAc, is a graph-based operational

semantics which is nearly identical in form to DDPA as presented in Section 4 but is still a full and

faithful interpreter for the CBV λ-calculus.
We believe ωDDPAc is a unique and interesting presentation of operational semantics in its

own right which may independently have other applications. It lacks closures, substitution, fresh

variables, or an environment, and reductions are all polynomially bounded in length, a very

surprising feature for a Turing-complete interpreter. (This bound may initially seem paradoxical,

but the reduction steps themselves are undecidable. We discuss this further in Section 5.5.)

We dedicate this section of the paper to demonstrating the equivalence of the ground truth

semantics and ωDDPAc; soundness of DDPA with respect to ωDDPAc is then shown in Section 6.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: August 2019.

Higher-Order Demand-Driven Program Analysis 1:17

e ::= [c, . . .] expressions
c ::= x =b clauses
b ::= f | x | x x bodies
x ::= (identifiers) variables
v ::= f values
f ::= fun x -> (e) functions

κ ::= ⟨f , E⟩ closures
E ::= [x 7→ κ, . . .] environments
ϕ ::= [⟨E, e⟩, . . .] evaluation states

Fig. 18. Concrete Language Grammar Fig. 19. Closure-Based Evaluation Grammar

Definition

[⟨E, [x = f] | | e⟩] | | ϕ −→1 [⟨E | |[x 7→ ⟨f , E⟩], e⟩] | | ϕ

Alias

(x2 7→ κ) ∈ E

[⟨E, [x1 =x2] | | e⟩] | | ϕ −→1 [⟨E | |[x1 7→ κ], e⟩] | | ϕ

Call

ϕ = [⟨E, [x1 =x2 x3] | | e⟩] | | ϕ
′ (x2 7→ ⟨funx4 -> (e

′) , E ′⟩) ∈ E (x3 7→ κ) ∈ E

ϕ −→1 [⟨E ′ | |[x4 7→ κ], e ′⟩] | | ϕ

Return

[⟨E | |[x 7→ κ], []⟩, ⟨E ′, [x1 =x2 x3] | | e⟩] | | ϕ −→1 [⟨E ′ | |[x1 7→ κ], e⟩] | | ϕ

Fig. 20. Closure-Based Operational Semantics

5.1 Closure-Based Operational Semantics
We begin by defining an environment/stack/closure-based operational semantics for the λ-calculus.
This is not far in spirit from a CEKmachine [15]. The grammar of our language appears in Figure 18;

this is simply the grammar from Figure 15 with hats removed (or, the grammar from Figure 1

without records, pattern matching, or state). We additionally define the grammar of Figure 19 for

use in our operational semantics: environments E are mappings from variables to closures, closures

κ are pairs of functions and environments, and evaluation states ϕ are a stack of pairings between

environment and instructions to be executed.

As in Section 2, we restrict all variable bindings throughout a particular program to be unique

for convenience. We define RV(e) similarly to Definition 4.2 to return the last variable defined by

an expression.

We define the closure-based small step operational semantics as a relation ϕ −→1 ϕ as follows:

Definition 5.1. ϕ −→1 ϕ holds if a proof exists in the system of Figure 20. We write ϕ0 −→
∗ ϕn

iff ϕ0 −→
1 . . . −→1 ϕn .

The rules in Figure 20 are largely straightforward. Each rule acts upon the topmost element of

the ϕ stack. The Definition rule, upon encountering an assignment of function f to variable x , will
add the binding x 7→ ⟨f , E⟩ to the environment, where E is a copy of the previous environment

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: August 2019.

1:18 L. Facchinetti, Z. Palmer, S. Smith

l ::= x 7→ κ | I|J stackless evaluation terms
L ::= [l, . . .] stackless evaluation logs

ι ::= c | x
Jc
= x stackless evaluation instruction

I ::= [ι, . . .] stackless evaluation expressions

Fig. 21. Stackless Evaluation Grammar

representing the non-local variables of f . The Alias rule is similar, copying the current value of x2
from the environment into a new binding for x1. The Call rule pushes a new frame onto the ϕ stack

in which to execute the function’s body; the Return rule pops a completed frame and updates the

caller’s environment with the functions return value which, as in Definition 4.2, we take to be the

last assignment in the function’s body.

Note that, throughout evaluation, the only variables added to an environment E on the stack

are those from the function’s closure and from the function body. Due to the unique variable

requirement of expressions, no variable can be defined in both; as a result, each x 7→ κ within an

environment maps a distinct variable.

5.2 A Stackless Operational Semantics
We now begin taking the steps towardωDDPAc as outlined in Figure 17. Each step towardωDDPAc
makes some aspect of the system more demand-driven rather (while still maintaining call-by-value

evaluation semantics). In this first step, we define an operational semantics which stores binding

information in a flat historical log rather than in a stack. In addition to bindings, this log stores

events in which stack frames are pushed and popped, so it can fully replace the environments E of

the previous system.

The grammar for the stackless system appears in Figure 21. An evaluation state is a pairing

between a log L and a stackless expression I ; note that every e is of form I . In addition to clauses,

stackless expressions may include annotated assignments indicating when functions return. When

functions are called, Iis added to the log to record the event; when a function returns, this is

recorded withJ. As a result, the log L stores all bindings throughout the execution of program

(even those which are no longer in scope); we then define a function to extract an environment

from a provided log which will skip over any variables in functions that have already returned.

Definition 5.2. We define the environment splitting function SplitEnv(L,n, E) for non-negative
integer n as follows:

SplitEnv([],n, E) = ⟨[], E⟩
SplitEnv(L′ | |[J],n, E) = SplitEnv(L′,n + 1, E)
SplitEnv(L′ | |[I], 0, E) = ⟨L′, E⟩
SplitEnv(L′ | |[I],n, E) = SplitEnv(L′,n − 1, E) when n > 0

SplitEnv(L′ | |[x 7→ κ], 0, E) = SplitEnv(L′, 0, [x 7→ κ] | | E)
SplitEnv(L′ | |[x 7→ κ],n, E) = SplitEnv(L′,n, E) when n > 0

Wewrite SplitEnv(L) to abbreviate SplitEnv(L, 0, []).We define ExtractEnv(L) = E when SplitEnv(L) =
⟨L′, E⟩.

This function traces the log backwards, building the environment E by finding each binding

which occurred during the call to this function or one of its calling ancestors. The second argument

is a number counting intermediate function calls to ensure that non-closure-captured bindings

from within previously-called functions are not included in the resulting environment.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: August 2019.

Higher-Order Demand-Driven Program Analysis 1:19

Definition

L; [x = f] | | I −→1 L | |[x 7→ ⟨f , ExtractEnv(L)⟩]; I

Alias

x2 7→ κ ∈ ExtractEnv(L)

L; [x1 =x2] | | I −→
1 L | |[x1 7→ κ]; I

Call

c = (x1 =x2 x3)
(x2 7→ ⟨funx4 -> (e

′) , E⟩) ∈ ExtractEnv(L) (x3 7→ κ) ∈ ExtractEnv(L)

L; [c] | | I −→1 L | |[I] | | E | |[x4 7→ κ]; e ′ | |[x1
Jc
= RV(e ′)] | | I

Return

(x2 7→ κ) ∈ ExtractEnv(L)

L; [x1
Jc
= x2] | | I −→

1 L | |[J, x1 7→ κ]; I

Fig. 22. Stackless Operational Semantics

With this extraction function, we can define the stackless operational semantics. We overload

the −→1
operator as follows:

Definition 5.3. L; I −→1 L′; I ′ holds if a proof exists in the system of Figure 22. We write

L0, I0 −→
∗ Ln, In iff L0, I0 −→

1 . . . −→1 Ln, In .

5.2.1 Proof of Equivalence. We now demonstrate the equivalence of the above operational

semantics to the one in the previous section. This is accomplished by establishing a bisimulation

� between the original program states ϕ and the stackless program states L; I . We formalize this

bisimulation as follows:

Definition 5.4. We write ϕ � L; I to mean either ϕ = L = I = [] or all of the following:

• ϕ = [⟨E, e⟩] | | ϕ ′
. (The stack is non-empty)

• SplitEnv(L) = ⟨L′, E⟩. (The extracted environment matches the topmost stack frame.)

• I = e | |[J] | | I ′. (The remaining instructions are the same in both systems.)

• If ϕ ′ , [] then ϕ ′ � L′; I ′. (This property holds inductively for each stack frame.)

This bisimulation trivially holds for the start of evaluation: that is, for any e , [⟨[], e⟩] � []; e .
Proving the remainder of equivalence relies upon a key lemma to preserve the bisimulation at each

evaluation step:

Lemma 5.5. If ϕ � L; I then
• if ϕ −→1 ϕ ′ then L; I −→1 L′; I ′ such that ϕ ′ � L′; I ′, and
• if L; I −→1 L′; I ′ then ϕ −→1 ϕ ′ such that ϕ ′ � L′; I ′.

Proof. By case analysis on the rule used. In particular, each rule in Figure 20 aligns with each

rule in Figure 22 such that the premises of a rule can be proven by the premises of its counterpart

and the properties of the bisimulation. □

In the above proof, the only non-trivial steps exist between the Call and Return rules. First, the

systems differ in how they represent a call in progress (an existing call site on the stack in the

original system and an annotation in the stackless system). Second, we must be able to demonstrate

that ExtractEnv correctly describes the environment E both when a new function is called and when

a running function returns. The latter relies upon the IandJ symbols appearing in the binding log;

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: August 2019.

1:20 L. Facchinetti, Z. Palmer, S. Smith

z ::= x =v | x =x | x
Ic
= x | x

Jc
= x environment terms

Z ::= [z, . . .] environments

w ::= c | x
Ic
= x | x

Jc
= x clauses

W ::= [w, . . .] expressions
X ::= [x, . . .] variable stacks

Fig. 23. Lazy Lookup Evaluation Grammar

that these annotations are present is a consequence of the inductive property of the bisimulation

described above.

5.3 An Operational Semantics with Lazy Lookup
Our next step toward ωDDPAc is to define an operational semantics which looks up the value

of variables on demand rather than eagerly constructing bindings. This lazy lookup operation is

starting to get close to DDPA’s lookup operation (Definition 4.6): like DDPA, it traces backward

through the program to reconstruct bindings as needed, including reconstruction of the context of

a function’s closure when needed.

We define the grammar we require for this system in Figure 23. Unlike the previous systems,

our program state for this operational semantics will simply be an expressionW with no explicit

environment. Although we provide a grammar of environments Z , this is primarily used to describe

the first unevaluated call site of the expressionW .

Lazy lookup is defined in function Z (X ,n) as follows. We useX as a stack of variables in a fashion

similar to DDPA’s Definition 4.6. The integer n serves a purpose similar to Definition 5.2: to skip

over bindings no longer in scope.

Definition 5.6. For a given environment Z , we define the lookup function Z (X ,n) as follows:

(1) If Z = Z ′ | |[x =v] then Z ([x], 0) = v .
(2) If Z = Z ′ | |[x = f] and X = [x] | |X ′

for X ′ , [] then Z (X , 0) = Z ′(X ′, 0).
(3) If Z = Z ′ | |[x =x ′] then Z ([x] | |X ′, 0) = Z ′([x ′] | |X ′, 0).

(4) If Z = Z ′ | |[x
Ic
= x ′] then Z ([x] | |X ′, 0) = Z ′([x ′] | |X ′, 0).

(5) If Z = Z ′ | |[x ′′ Ic
= x ′], x ′′ , x , and c = (xr =xf xv), then Z ([x] | |X ′, 0) = Z ′([xf , x] | |X

′, 0).

(6) If Z = Z ′ | |[x
Jc
= x ′] then Z ([x] | |X ′, 0) = Z ′([x ′] | |X ′, 0).

(7) If Z = Z ′ | |[x ′ =b] and x , x ′
then Z ([x] | |X ′,n) = Z ′([x] | |X ′,n).

(8) If Z = Z ′ | |[x =b] and n > 0 then Z (X ,n) = Z ′(X ,n).

(9) If Z = Z ′ | |[x
Ic
= x ′] and n > 0 then Z (X ,n) = Z ′(X ,n − 1).

(10) If Z = Z ′ | |[x
Jc
= x ′] and n > 0 then Z (X ,n) = Z ′(X ,n + 1).

We write Z (X) to mean Z (X , 0).

As with the environment extraction function in Definition 5.2, the integer here is used to

disregard variables which were bound in calls that have since completed. One key difference in

these definitions is that Definition 5.2 stops its work upon reaching a Isymbol with n = 0 (which

indicates that we have left local scope) whereas Definition 5.6 continues past the Iwith n = 0.

In the eager stackless system of Section 5.2, we copied the closure of each function into place

immediately after the start-of-call symbol I. In this lazy system, we will not; instead, for non-local

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: August 2019.

Higher-Order Demand-Driven Program Analysis 1:21

Application

c = (x1 =x2 x3) Z ([x2], 0) = funx4 -> (e
′) Z ([x3], 0) = v

Z | |[c] | |W −→1 Z | |[x4
Ic
= x3] | | e

′ | |[x1
Jc
= RV(e ′) | |W

Fig. 24. Lazy Lookup Operational Semantics

variables captured in closure, clause 5 will first identify the point in time at which the closure was

captured and then continue lookup from that point.

This lookup definition is similar to Definition 4.6 of DDPA. The most notable differences are the

absence of a context parameter and the presence of the n parameter. The former is not necessary

here as context can be established from a traversal of Z . The latter is required here but not in the

analysis because the program point immediately following a function call in DDPA has at least two

predecessors – the call’s wiring nodes and the call node itself – while the list Z may only have one.

The next section defines an operational semantics to bridge this gap.

Given the above lazy lookup function, we can define an operational semantics as follows:

Definition 5.7. W −→1 W ′
holds if a proof exists in the system of Figure 24. We writeW0 −→

∗ Wn
iffW0 −→

1 . . . −→1 Wn .

Note that Figure 24 contains only one evaluation rule, lining up closely with DDPA Figure 16

and considerably simplifying the four rules from the previous systems. The previous Definition

and Alias rules are obsolete here due to the lazy manner in which lookup occurs and the fact that

we no longer construct explicit closures. The Call and Return rules have been grouped into a single

Application rule; this is also possible due to lazy lookup, as we no longer need to process the exit

annotation when the function returns.

5.3.1 Proof of Equivalence. We now demonstrate that the operational semantics just defined is

equivalent to the stackless semantics defined in Section 5.2. As in Section 5.2.1, we demonstrate this

via a bisimulation between states of the two systems. This bisimulation is somewhat more subtle,

however, as we must first align the eager and lazy environments and then align evaluation states.

To describe the relationship between the systems’ environments, we overload the � notation to

describe an alignment between eager environments E (which are generated in the stackless system

by ExtractEnv) and pairs of lazy lookup environment Z and variable stack X . It is necessary but

not sufficient to require each binding in E to match the results of lookup on Z and vice versa; to

correctly handle higher-order functions, we must also ensure that closures are correctly represented.

The variable stack X in this bisimulation describes the sequence of lookups necessary to reach the

point where a particular closure is defined. We thus write this bisimulation as follows:

Definition 5.8. We write E � Z ;X to mean:

• For all x 7→ ⟨f , E ′⟩ in E, Z (X | |[x]) = f and E ′ � Z ; (X | |[x]).
• For all Z (X) = f , x 7→ ⟨f , E ′⟩ appears in E such that E ′ � Z ; (X | |[x]).

That is, an eager function lookup aligns with a lazy function lookup if the alignment property

applies recursively to the eager function’s closure. The additional x is used to continue to describe a

path throughZ to the point at which the function’s closure is defined. This definition is well-founded

because the first defined function will always have an empty closure, making the bisimulation

property for that function trivial.

Given a means by which environments can be aligned, we can then define the bisimulation

between the stackless and lazy lookup systems:

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: August 2019.

1:22 L. Facchinetti, Z. Palmer, S. Smith

V ::= {v, . . .} value sets

a ::= c | x
Ic
= x | x

Jc
= x | annotated clauses

Start | End

д ::= a << a concrete control flow edges
G ::= {д, . . .} concrete control flow graphs
C ::= [c, . . .] clause stacks
C ::= {C, . . .} clause stack sets

Fig. 25. ωDDPAc Evaluation Grammar

Definition 5.9. We write L; I �W to mean:

• W = Z | |W ′
for the largest possible Z ; that is, the first element ofW ′

is the first application

inW (orW ′
is empty).

• I =W ′
; that is, the list of unperformed work is the same.

• ExtractEnv(L) � Z ; []; that is, every binding is correctly represented by lazy lookup.

Again the main lemma is bisimulation preservation:

Lemma 5.10. If L; I �W then
• ifW −→1 W ′ then L; I −→∗ L′; I ′ such that L′; I ′ �W ′, and
• if L; I −→1 L′; I ′ then L′; I ′ −→∗ L′′; I ′′ andW −→1 W ′′ such that L′′; I ′′ �W ′′.

This lemma displays an asymmetry which hints at a difference between the two systems: in-

tuitively, the stackless system takes smaller steps than the lazy lookup system. The only step in

the lazy system is application; the definition clauses which appear as a result, for instance, are

implicitly processed by lazy lookup later and upon demand. In essence, the eager system may need

to take many steps to “catch up” to the lazy system’s state. Likewise, a single step in the eager

system may not align directly with the lazy system, but the eager system will eventually catch up

to the single step taken by the lazy system by processing any definitions, aliases, etc. which the

lazy system deferred.

The initial bisimulation is not immediate but is relatively easy to prove using the above reasoning:

the starting expression may have to take a few steps to catch up to the initial state of the lazy system,

but a bisimulation is provable upon reaching the first application (or the end of the program).

Lemma 5.11. For all e , []; e −→∗ L; I such that L; I �W whereW = e .

In this lemma note that all e are of formW . The equivalence of the stackless and lazy systems

then follows directly by induction on computation length using the above two lemmas.

5.4 ωDDPAc: A Graph-Based Operational Semantics
We now presentωDDPAc, our final operational semantics, and prove it equivalent to the lazy lookup

system just defined. ωDDPAc is a graph-based operational semantics which represents expressions

as concrete (runtime) control flow graphs rather than lists with a fixed point of execution. It only

differs from the analysis of Section 4 in two ways: the calling contexts are fixed to be the full call

stack without approximation (the ω in the name), and the wiring rule is refined compared to DDPA

to take the current context into account (the additional “c” at the end of ωDDPAc).
We define the grammar of ωDDPAc in Figure 25. This grammar is structurally very similar to

the analysis. The only difference is that we are using a list of contexts C as opposed to a general

context stack model Σ. We use notation similar to Definition ?? for these graphs; for instance, we
sometimes write a <� a′ to mean (a << a′) ∈ G for some G understood from context.

In comparison to the lazy lookup system of Section 5.3, the key difference is that, rather than

representing execution as a listW , this system uses a graphG . The nodes of the graph are individual

program clauses and the special nodes Start and End, representing the start and end of the overall

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: August 2019.

Higher-Order Demand-Driven Program Analysis 1:23

program. Edges in the graph will represent control flow which occurs at least once during execution.
Intuitively, if we evaluate the same program in each system in lock-step and pick a moment during

evaluation, the lazy lookup evaluation stateW will correspond to a path in the ωDDPAc state G.
A consequence of this model is that, for any program, the set of possible control flow decisions

(here, graph edges) is finite and monotonically increasing. (We discuss this further in Section 5.5.)

However, the number of program states (here, paths in the graph) may not be. A loop, for instance,

manifests as a repeated pattern inW but as a cycle in G . As a result, a particular node in the graph

is insufficient to describe the current state of execution: we must also be able to identify how we

reached that point. This is achieved by the use of a stack of clausesC which for the simple language

in this section, C corresponds to the runtime call stack of the program.

To define ωDDPAc, we require a lazy lookup function similar to that which characterized the

system of Section 5.3. In this case, the graph affords us the ability to skip over out-of-scope bindings

without an integer counter by relying on a wiring process similar to the �Wire function in Section 4.

This leads us to a definition in near-perfect alignment with the lookup function of Section 4.1:

Definition 5.12. Given control flow graph G, G(X ,a0,C) is the function returning the least set of

values V satisfying the following conditions given some a1 <� a0:

(1) Value Discovery

If a1 = (x =v) and X = [x], then v ∈ V .

(2) Value Discard

If a1 = (x1 = ˆf) and X = [x1, . . . , xn] for n > 0, then G([x2, . . . , xn],a1,C) ⊆ V .

(3) Alias

If a1 = (x =x ′) and X = [x] | |X ′
then G([x ′] | |X ′,a1,C) ⊆ V .

(4) Function Enter Parameter

If a1 = (x
Ic
= x ′), X = [x] | |X ′

, and C = [c] | |C ′
, then G([x ′] | |X ′,a1,C

′) ⊆ V .

(5) Function Enter Non-Local

If a1 = (x ′′ Ic
= x ′), X = [x] | |X ′

, x ′′ , x , c = (xr =xf xv), and C = [c] | |C ′
, then

G([xf , x] | |X
′,a1,C

′) ⊆ V .

(6) Function Exit

If a1 = (x
Jc
= x ′), X = [x] | |X ′

, and c = (xr =xf xv), then G([x ′] | |X ′,a1, [c] | |C) ⊆ V ,
provided fun x ′′ -> (e) ∈ G([xf], c,C) and x

′ = RV(e).

(7) Skip

If a1 = (x ′′ =b), X = [x] | |X ′
, and x ′′ , x , then G(X ,a1,C) ⊆ V .

Given the above lookup function, we define ωDDPAc in the same fashion as CFG construction in

the analysis: an incremental construction of the graph structure based upon the values discovered

by demand-driven lookup. See Figure 26 for the (sole) rule, in analogy with Figure 16 of the analysis.

Comparing these two figures there is one non-trivial change which makes ωDDPAc slightly more

refined (and is the source of the appended “c” in the name): variables f and v are looked up relative

to the current context C , whereas DDPA’s wiring rule drops this context information for simplicity.

The definition of Active is also different in ωDDPAc since this context is needed: it returns the
set of possible contexts that could be active at this point in the graph. In Section 4’s definition of

DDPA, the context is not needed and the corresponding �Active? function is a predicate rather than

a function onto sets of contexts. The precise definition of Active is as follows.

Definition 5.13. Let Active(G,a) be least setC conforming to the following conditions:

• If c <� a then Active(G, c) ⊆ C .

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: August 2019.

1:24 L. Facchinetti, Z. Palmer, S. Smith

Application

c = (x1 =x2 x3) C ∈ Active(c,G) f ∈ G([x2], c,C) v ∈ G([x3], c,C)

G −→1 G ∪Wire(c, f , x3, x1)

Fig. 26. The ωDDPAc Operational Semantics

1 o = fun x -> (a = x x);

2 r = o o;
W = [o = . . . , x

Ir
= o, x

Ia
= x, . . . , x

Ia
= x, a = x x, a

Ja
= a . . . , a

Ja
= a, r

Jr
= a]

ω-combinator code Example of lazy lookup evaluation in progress

o r oo a oo

x=o Ir

r=aJr

x=x Ia

a=aJa

Example of ωDDPAc evaluation (completed graph)

Fig. 27. ω-combinator Execution

• If a′ <� a for a′ = (x
Ic
= x ′) and C ∈ Active(G,a′), then (C | |[c]) ∈ C .

• If Start <� a then [] ∈ C .

Note thatC may not be finite.

We define Wire in analogy with �Wire (Definition 4.8) simply by removing the hats from each

term. We then define ωDDPAc itself as follows:

Definition 5.14. G −→1 G ′
holds if a proof exists in the system of Figure 26. We writeG0 −→

∗ Gn
iff G0 −→

1 . . . −→1 Gn .

5.4.1 Proof of Equivalence. We now show that ωDDPAc as defined above is equivalent to the

lazy lookup system of Section 5.3. This is the final operational semantics equivalence proof: it

allows us to connect the standard operational semantics to this graph-based form.

Considering Alignment. Alignment between the lazy lookup system and ωDDPAc is somewhat

more involved than the previous alignments. Non-recursive programs always evaluate in lock-step

between the two systems – for each list substitution in the lazy lookup system, the same nodes and

edges are added in ωDDPAc – but, in recursive programs, the ωDDPAc semantics may “get ahead”

of the lazy lookup semantics.

For instance, recall the ω-combinator example from Section 2.5 which we reproduce here in

Figure 27. The lazy lookup system will continuously grow a listW by substituting the call site

a = x x (underlined in the figure) with itself surrounded by wiring annotations. In ωDDPAc,
however, the graph stops growing after the Application rule acts once on each call site. The cycles

formed by that rule effectively describe all such listsW , since those lists will grow according to a

pattern in this divergent case.

This does not mean that ωDDPAc is sub-Turing or that we claim to predict halting (via whether

the End node is Active). While the size of the concrete control flow graph for any program is finite,

computing the next graph edge to be added is a recursively enumerable but not recursive property:

the Application rule must consider unboundedly many contexts, any one of which may lead to

additional control flow edges.

Non-divergent recursive programs exhibit behavior similar to the above. In a program which

recurses a fixed number of times (e.g. via a counter), the count-down step would be processed

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: August 2019.

Higher-Order Demand-Driven Program Analysis 1:25

Step

Wn −→1 Wn+1

[W1, . . . ,Wn] −→
1 [W1, . . . ,Wn,Wn+1]

Fig. 28. Historical Lazy Lookup Operational Semantics

exactly once by the graph-based semantics. In such cases, a finite number of steps in the lazy lookup

system is sufficient to catch up to the graph-based system, at which point the systems continue

operating in step.

Historical Evaluation. Defining the bisimulation between these two systems is not straightforward

because ωDDPAc leaves application nodes in the graph. This means there are nodes inG which

do not appear inW . At the same time, the bisimulation must be two-directional: we can’t allow

arbitrary extra content in G. That is, we must allow “good junk” (old call sites) without allowing

arbitrary “bad junk”.

We address this by defining a form of historical evaluation for the lazy lookup system. This

system mimics the lazy lookup system but retains every step of evaluation and so implicitly retains

the original application nodes. We useW to represent a list ofW . We formally define that system

as follows:

Definition 5.15. W −→1 W ′
holds if a proof exists in the system of Figure 22. We write

W 0 −→∗ W n iff W 0 −→1 . . . −→1 W n . We say a list W = [W1, . . .Wn] is historical iff, for
all 1 ≤ i < n,Wi −→

1 Wi+1.

The lazy lookup system and the historical lazy lookup system are trivially equivalent:

Lemma 5.16. For anyW0,W0 −→
1 . . . −→1 Wn iff [W0] −→

1 . . . −→1 [W0, . . . ,Wn].

We can use the historical information to drive our bisimulation.

Bisimulation and Equivalence. Define bisimulation between the historical system and ωDDPAc
as follows:

Definition 5.17. We writeW � G to mean the following:

• W is historical.

• For each [w1, . . . ,wn] inW , {Start << w1 << . . .wn << End} ⊆ G.
• For each (w << w ′) ∈ G, there is someW ∈W such thatW =W ′ | |[w,w ′] | |W ′′

.

• For each (Start << w) ∈ G, there is someW ∈W such thatW = [w] | |W ′
.

• For each (w << End) ∈ G, there is someW ∈W such thatW =W ′ | |[w].

As in the previous proofs, this proof relies upon a bisimulation preservation lemma:

Lemma 5.18. If W � G then
• If W −→1 W ′, then eitherW ′ � G or G −→1 G ′ such thatW ′ � G ′.
• If G −→1 G ′ thenW −→∗ W ′ such thatW ′ � G ′.

Much like Lemma 5.10, the inductive case between the stackless and lazy systems, this lemma

is asymmetric because ωDDPAc takes larger steps than the historical system. In the case of a

terminating recursive function call, for instance, the historical system may need to take many steps

to catch up to a single wiring in ωDDPAc. Nonetheless, this number of steps is always finite. In

cases of divergence, the historical system never catches up but the graph is unable to grow any

further.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: August 2019.

1:26 L. Facchinetti, Z. Palmer, S. Smith

5.5 Overall Equivalence
The previous equivalences can be combined to produce the desired overall equivalence: the closure-

based λ-calculus of Section 5.1 is equivalent to ωDDPAc. For notational convenience, we write ↓ to
indicate a sequence of −→1

(in all overloadings) which cannot make further progress; for instance,

G ↓ G ′
iff G −→∗ G ′

and noG ′′ , G ′
exists such thatG ′ −→1 G ′′

. We then phrase equivalence as

follows:

Theorem 5.19 (Eqivalence of Operational Semantics). For any e , [⟨[], e⟩] ↓ ϕ if and only if
{Start << e << End} ↓ G such that Active(G, End) , ∅.

Proof. By composition of the equivalence arguments in Sections 5.2.1, 5.3.1, and 5.4.1. □

This equivalence is key to our soundness proof, which we present in the next section. Before

proceeding, however, we take a moment to consider some unusual features of ωDDPAc.

Reflecting on ωDDPAc. Every operational semantics for the λ-calculus we are aware of relies
upon one or more of the following mechanisms:

• Substitution (as in classic presentations of λ-calculus)
• An environment and closures (as in the CEK machine [15])

• Variable freshening (as in our previous work [36])

None of these three mechanisms appear in the definition of ωDDPAc, yet Theorem 5.19 shows it

is a full and faithful implementation of CBV λ-calculus. This shows that the DDPA analysis, which

is clearly very close in spirit to ωDDPAc, emerges from a fundamentally different operational basis.

Optimal λ-reduction [27] is perhaps the closest to ωDDPAc of the existing λ-semantics; it is a

substitution-based model but maximally shares syntax subtrees in a graph structure. The sharing

graphs in that semantics grow unboundedly unlike the ωDDPAc graph.
Section 5.4 pointed out that the graph constructed by ωDDPAc is finite and monotonically

increasing. From this, we can demonstrate a polynomial bound on ωDDPAc execution steps:

Lemma 5.20. For a program of size n, there are O(n2) non-trivial evaluation steps in ωDDPAc. That
is, for anyG = {Start << e << End},G ↓ G ′ inO(n2) steps for someG ′ (making no assertions regarding
Active(G, End)).

Proof. All edges in G ′
are between either clauses (of which there are O(n)) or wiring nodes.

Wiring nodes are bounded by O(n2): there are three elements of variation in each (call site, left

variable, and right variable) and, in both cases, one variable is fixed by the call site. As there are

O(n) call sites and O(n) variables in the program, there are at most O(n2) wiring nodes in G ′
. □

This lemmamay at first appear to be a blatant contradiction: we have a full and faithful interpreter

for the λ-calculus, but it is tightly bounded in the number of steps it can take! On further inspection,

we have only shifted the work – the global state space is small, but searching through all the

possible contexts is a potentially unbounded search.

To understand this it may also be helpful to informally consider an alternative presentation of

ωDDPAc where the global state is not just G but also includes the current stack context and so is

⟨G,C⟩: here there is no need to search for a viable stack C since it has been explicitly recorded, but

the stack can grow arbitrarily and so the overall state space is now unbounded, unlike the case of

ωDDPAc.
In summary, any program evaluated using the ωDDPAc operational semantics requires at most

O(n2) steps, but the operational semantics relation must be undecidable by Turing-completeness of

the ωDDPAc interpreter, and even the single step relation of ωDDPAc has to be undecidable.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: August 2019.

Higher-Order Demand-Driven Program Analysis 1:27

Lemma 5.21. (1) {Start << e << End} ↓ G is undecidable.
(2) the ωDDPAc lookup relation G(X ,a0,C) of Definition 5.12 is undecidable, and thus G −→1 G ′

is undecidable.

Proof. For (1), this follows directly from Theorem 5.19 and the Turing completeness and thus

undecidability of the call-by-value λ-calculus computation relation that computes to a value. For

(2), suppose lookup was decidable. Since there are only finitely many states G possible for any

program by Lemma 5.20 there are also finitely many non-repeating sequencesG1, . . . ,Gn . If lookup

were decidable it would be possible to enumerate all these sequences and for each one verify if

each of the steps in a given sequence were legal using lookup and the single-step rule of Figure 26

(which would itself trivially be decidable if lookup is decidable). But, then it would also be possible

to decide (1) as we could consider all sequences with G1 = {Start << e << End} and Gn = G and

check if any of them constituted a valid n-step computation, a contradiction. □

The following section demonstrates how DDPA soundly approximates this operational semantics.

6 SOUNDNESS
We now show the soundness of the analysis with respect toωDDPAc and therefore, by Theorem 5.19,

with respect to the lambda calculus in Section 5.1. Comparing DDPA with ωDDPAc, there are two
key differences as outlined above:

• Call stacks C in ωDDPAc correspond to context stacks Ĉ in DDPA.

• The Active function returns a set of possible call stacks while the �Active? function is a predicate.
In brief, the soundness proof proceeds by showing DDPA is abstract interpreter forωDDPAc. The

abstraction function α is lossless on all components of the language grammar, mapping each term

to its hatted counterpart (e.g. x maps to x̂ , f maps to
ˆf , etc.). Call stacks [c1, . . . , cn] are mapped

to context stacks Push(α(cn), . . . Push(α(c1), ϵ)) and �Active? holds when Active returns a non-empty

set. No other information is lost. This outline is now expanded.

6.1 DDPAc
Our first step is to define an analysis DDPAc and then to weaken that analysis to DDPA (in

accordance with Figure 17). The DDPAc analysis is a midpoint between ωDDPAc and DDPA; in

fact, DDPAc can be seen as a generalization of the ωDDPAc defined in Section 5.4. DDPAc uses the

context stack models and lookup function from Section 4.1 but relies upon a function �Active (the
abstract version of Definition 5.13) to produce a set of valid contexts for each lookup. For each Σ,
we define that abstract function as follows:

Definition 6.1. Let �Active(Ĝ, â) be least set Ĉ conforming to the following conditions:

• If ĉ <� â then �Active(Ĝ, ĉ) ⊆ Ĉ .

• If â′ <� â for â′ = (x̂
Îc
= x̂ ′) and Ĉ ∈ �Active(Ĝ, â′), then Push(ĉ, Ĉ) ∈ Ĉ .

• If Start <� a then ϵ ∈ Ĉ .

Note that Ĉ may not be finite.

In the interest of showing DDPAc to be an analysis in its own right, we observe that �Active can
be computed for finite context stack models Σ. One simple algorithm is to store a set of context

stacks for each node in Ĝ. Initially, Start has the only non-empty set (containing ϵ); the result of�Active is calculated by propagating the context stacks throughout the graph to saturation.

DDPAc can re-use most other definitions from DDPA including lookup. Only the ωDDPAc-
inspired evaluation rule needs to be incorporated to complete the definition.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: August 2019.

1:28 L. Facchinetti, Z. Palmer, S. Smith

Application

ĉ = (x̂1 = x̂2 x̂3) Ĉ ∈ �Active(ĉ, Ĝ) ˆf ∈ Ĝ([x̂2], ĉ, Ĉ) v̂ ∈ Ĝ([x̂3], ĉ, Ĉ)

Ĝ −̂→c
1 Ĝ ∪ �Wire(ĉ, ˆf , x̂3, x̂1)

Fig. 29. DDPAc Abstract Evaluation Rule

Definition 6.2. For a particular Σ, we define Ĝ −̂→c
1 Ĝ ′

to hold if a proof exists in the system

of Figure 29. We write Ĝ0 −̂→c
∗ Ĝn iff Ĝ0 −̂→c

1 . . . −̂→c
1 Ĝn . We write kDDPAc to refer to DDPAc

using context stack model Σk .

If we choose Σ to be Σω , then this system is identical to ωDDPAc. In that case, ϵ corresponds to
the concrete call stack []; this is not a guarantee of call stacks (since Pop(ϵ) = ϵ but this is not true
for []), but it holds in DDPAc due to the definition of �Active.

Soundness of DDPAc can be demonstrated by abstract interpretation. The abstraction function α
here is identity except in the case of call stacks and context stacks: each call stack [c1, . . . , cn] is
mapped to the context stack Push(α(cn), . . . Push(α(c1), ϵ)). We first establish soundness of lookup:

Lemma 6.3. Let Ĝ ⊇ α(G) for any G. Let V = G([x] | |X ,a,C) and let V̂ = Ĝ([x̂] | | X̂ , â, Ĉ); then
α(V) ⊆ V̂ .

Proof. By induction on the size of the proof of G([x] | |X ,a,C) and case analysis on the rule

used at each proof step. □

We then state soundness of DDPAc as follows:

Lemma 6.4. Let Ĝ ⊇ α(G) for any G. Then G −→1 G ′ implies Ĝ −̂→c
1 Ĝ ′ such that α(G) ⊆ Ĝ.

Proof. By matching each premise of the concrete Application rule to its abstract counterpart.

In particular, lookup is monotonic in the size of the graph. □

6.2 DDPA
Finally, we demonstrate that DDPAc is conservatively approximated by DDPA from Section 4. The

only difference between these two analyses is in the handling of active nodes: DDPAc calculates

possible contexts using �Active whereas DDPA simply determines whether any contexts exist using�Active?. This weakening is motivated by performance, as computing all possible contexts for a given

program point is generally expensive. While DDPAc is more precise than DDPA in this respect,

this increased precision is rarely necessary.

We show DDPA approximates DDPAc by observing the differences in the lookups of Figures 16

and 29. In DDPA, the context provided to lookup is always ϵ ; no other context stacks are provided

to lookup. However, Definition 4.4 requires that Pop(ϵ) = ϵ . With respect to lookup, this imposes a

form of subsumption on finite call stack models with ϵ at the top of the lattice. Formally, we state

this property as follows:

Lemma 6.5. For all Ĉ , Ĝ([x̂] | | X̂ , â, Ĉ) ⊆ Ĝ([x̂] | | X̂ , â, ϵ).

Proof. By induction on the proof of Ĝ([x̂] | | X̂ , â, Ĉ) and Definition 4.4. □

As a consequence, each lookup and CFG construction step in DDPAc is approximated by DDPA.

We formalize soundness between these systems as follows:

Lemma 6.6. For any Ĝ1 ⊆ Ĝ ′
1
, if Ĝ1 −̂→c

1 Ĝ2 then Ĝ ′
1
−̂→

1 Ĝ ′
2
such that Ĝ ′

1
⊆ Ĝ ′

2
.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: August 2019.

Higher-Order Demand-Driven Program Analysis 1:29

K̂ ::= [ˆk, . . .] continuation stacks ˆk ::= x̂ | v̂ | Jump(â, Ĉ) | Capture(2) continuations

Fig. 30. Alternate Lookup Grammar

Proof. By Lemma 6.5 and matching each premise of the rule in Figure 29 to its counterpart in

Figure 16. □

We now can assert the soundness of DDPA as follows:

Theorem 6.7 (Soundness). For any e , x , and a, if {Start << e << End} −→∗ G, C ∈ Active(G,a),
andG([x],a,C) = V , thenα({Start << e << End}) −→∗ Ĝ , �Active?(Ĝ,α(a)), andα(V) ⊆ Ĝ([α(x)],α(a), ϵ).

Proof. By Lemmas 6.1 and 6.6 and the monotonicity of Definition 4.6. □

7 DECIDABILITY
We now show the analysis defined in Section 4 is decidable. We in fact show a stronger result: for a

kCFA-like stack model (See Definition 4.4) which retains the fixed k most recent call sites, we show

that the control flow graph can be constructed in polynomial time.

Much of the decidability argument is immediately evident: functions like �Active? are computable

by inspection and, for any particular program and finite Σ, CFG size can be bounded by simple

counting arguments. The core of the proof is showing the decidability of variable lookup, Def-

inition 4.6. So, first we will first show lookup is decidable. We then formally prove the above

decidability property for DDPA.

7.1 Decidable Lookup
In Section 3 we informally outlined how we can implement lookup in terms of a pushdown

reachability question. Recall from that discussion that a state is created in the PDS for each (program

point, variable lookup) question, and additionally including the (approximate) context stack in the

state. PDS transitions then represent recursive calls to lookup. Inspecting Definition 4.6, as written

it is in fact not directly implementable as a pushdown reachability problem. The particular catch is

clause 6, which invokes lookup twice; if this was modeled as two edges in the PDS it would mean

either path can succeed, but clause 6 requires a conjunction of two lookups and that is not directly

encodable.

The solution for two invocations of lookup is not all that difficult: the PDS edge transitions for

the first lookup action, and a frame is pushed on the PDS stack to trigger the second invocation. In

order to formalize this idea, we first develop an equivalent version of lookup which replaces clause

6 with only one call to lookup and pushes the remaining one on the stack; various other clauses

are also needed to implement continuations. We then demonstrate the two lookup functions are

equivalent. Since the second definition of lookup is directly implementable on a PDS this shows

lookup is computable, since pushdown reachability is computable in time polynomial in the size of

the PDS [6].

Our alternate definition of lookup requires generalizing the lookup stack to a continuation stack
to keep track of other lookups that must eventually be performed, and for how to combine the

results of multiple lookups; the stack grammar appears in Figure 30. This continuation stack will

directly map to the stack of the pushdown system. We present the definition of the lookup function

and discuss the role of these continuations below.

Definition 7.1. Given control flow graph Ĝ, ĜLK̂, â0, ĈM is the function returning the least set of

values V̂ satisfying the following conditions given some â1 <� â0:

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: August 2019.

1:30 L. Facchinetti, Z. Palmer, S. Smith

(1) If â1 = (x̂ = v̂) and K̂ = [x̂] then v̂ ∈ V̂ .

(2) If â1 = (x̂ = ˆf) and K̂ = [x̂] | | K̂ ′
for K̂ ′ , [] then ĜLK̂ ′, â1, ĈM ⊆ V̂ .

(3) If â1 = (x̂ = x̂ ′) and K̂ = [x̂] | | K̂ ′
then ĜL[x̂ ′] | | X̂ ′, â1, ĈM ⊆ V̂ .

(4) If â1 = (x̂
Îc
= x̂ ′), K̂ = [x̂] | | K̂ ′

, and MaybeTop(ĉ, Ĉ), then ĜL[x̂ ′] | | X̂ ′, â1, Pop(Ĉ)M ⊆ V̂ .

(5) If â1 = (x̂ ′′ Îc
= x̂ ′), x̂ ′′ , x̂ , K̂ = [x̂] | | K̂ ′

, ĉ = (x̂r = x̂f x̂v), and MaybeTop(ĉ, Ĉ),

then ĜL[x̂f] | | K̂, â1, Pop(Ĉ)M ⊆ V̂ .

(6a) If â1 = (x̂
Jĉ
= x̂ ′), ĉ = (x̂r = x̂f x̂v), and K̂ = [x̂] | | K̂ ′

,

then ĜL[x̂f , Capture(2), Jump(â0, Ĉ), RealFlow?] | | K̂, â1, ĈM ⊆ V̂ .

(6b) If â1 = (x̂
Jĉ
= x̂ ′) and ĉ = (x̂r = x̂f x̂v), K̂ = [RealFlow?, fun x̂ ′′ -> (ê) , x̂] | | K̂ ′

, x̂ ′ = RV(ê),

then ĜL[x̂ ′] | | K̂ ′, â1, Push(ĉ, Ĉ)M ⊆ V̂ .

(7) If â1 = (x̂ ′′ =b), x̂ ′′ , x̂ , and K̂ = [x̂] | | K̂ ′
, then ĜLK̂, â1, ĈM ⊆ V̂ .

(8) If K̂ = [Jump(â′, Ĉ ′)] | | K̂ ′
then ĜLK̂ ′, â′, Ĉ ′M ⊆ V̂ .

(9) If K̂ = [v̂, Capture(2), ˆk1, ˆk2] | | K̂
′
, then ĜL[ˆk1, ˆk2, v̂] | | K̂ ′, â0, ĈM ⊆ V̂ .

This definition is very similar to the original lookup of Definition 4.6, but one key difference is

critical for decidability: clause 6 of the original Definition 4.6 is here divided into clauses 6a and 6b.

This is to solve the problem alluded to above of the two invocations of lookup in that clause: each

clause must invoke lookup only once to be encodable as a PDS, so the two lookups in that clause

are now expressed as two different clauses and with continuation frames added on the stack to

connect them. In this alternative formulation, lookup of a value that was returned from a function

call proceeds as follows:

(1) Clause 6a reacts to a function exit wiring node by triggering the addition of

[x̂f , Capture(2), Jump(â0, Ĉ), RealFlow?] to the stack. (While this might look like jibberish now,

let us proceed with how the lookup function works and the purpose of these new “continua-

tion frames” will be made clear.)

(2) Lookup proceeds to find a value for x̂f since that is now the top frame on the stack. The top

of the stack is then [v̂, Capture(2), Jump(â0, Ĉ), RealFlow?] at the â and Ĉ where the value was

found.

(3) Clause 9 activates to push v̂ deeper into the stack, turning the top of the stack into

[Jump(â0, Ĉ), RealFlow?, v̂].
(4) Clause 8 activates, “jumping” to the same program point and calling context that started this

lookup. The stack after the jump is performed is [RealFlow?, v̂].
(5) Now that we are back at CFG node â0 where we started, Clause 6b applies and continues

lookup, entering the discovered wiring node only when the discovered function’s return

variable matches that wiring node.

Lemma 7.2. Given fixed CFG Ĝ, for all X̂ , â, and Ĉ , Ĝ(X̂ , â, Ĉ) = ĜLX̂ , â, ĈM.

Proof. By induction on the size of the proof of Ĝ(X̂ , â, Ĉ) and then by case analysis on the clause

used from Definition 4.6. □

7.1.1 Proving Lookup is Decidable via PDS Reachability. Now that we have removed multiple

invocations of lookup from the original clause 6, each lookup clause examines a finite prefix of K̂ ,
applies some number of computable restrictions (such as limiting the form of â1 or checking the
predicate MaybeTop), and then specifies a lower bound on V̂ . Given this normal form, it is possible

to directly encode lookup as a PDS reachability problem. We let each pair of program point â in

Ĝ and context Ĉ in Ĉ define a state in the PDS. For every â1 <� â0, each clause of Definition 7.1

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: August 2019.

Higher-Order Demand-Driven Program Analysis 1:31

dictates a set of transitions in the PDS. For example: for any Ĉ , clause 3 transitions from ⟨â0, Ĉ⟩ to
⟨â1, Ĉ⟩, popping x̂ and pushing x̂ ′

. Accepting states are dictated by clause 1. Given this encoding,

each value v̂ in ĜLK̂, â, ĈM corresponds to a node â′ = (x̂ = v̂) in the set of nodes reachable in the

PDS from initial state ⟨â, Ĉ⟩ with initial stack K̂ . This leads us to the following lemma:

Lemma 7.3. For any context stack model Σ with a finite Ĉ and computable Push/Pop/MaybeTop

operations, Ĝ([x̂0], â, ϵ) is computable in time polynomial in the product of the number of nodes in Ĝ
and the size of Ĉ .

Proof. By reduction to the problem of reachability in a pushdown system accepting by empty

stack. Pushdown reachability is computable in time polynomial in the size of the automaton [6, 11],

so it suffices to bound the number of states and transitions by the product of the sizes of Ĝ and Ĉ .
States are bounded by this product by definition. Transitions are bounded by this product because

the grammar of stack elements
ˆk is bounded by this product and each clause of Definition 7.1

pushes and pops a constant number of stack elements. □

The proof strategy in the rest of this section can generally be applied to any finite context stack

model, but we primarily concern ourselves with the kDDPA analyses described in Section 4.1.1. For

that reason, it is helpful to simplify the statement of the lookup decidability lemma in those cases:

Lemma 7.4. Fixing Σ to some Σk for fixed constant k , Ĝ([x̂], â0, ϵ) is computable in polynomial time
in the number of nodes in graph Ĝ.

Proof. Let n be the number of nodes in graph Ĝ . For Σk , the number of stacks is of order O(nk)
where k is constant. By Lemma 7.3, Ĝ([x̂], â0, ϵ) is computable in time polynomial inO(nk+1), which
is polynomial in n. □

Note that if k was not fixed and was in fact increasing with the size of the program, lookup

would become exponential.

7.2 Proof of Decidability
Having shown lookup to be polynomial, it is now possible to show a similar result for the overall

analysis.

Lemma 7.5. Variable lookup is monotonic; that is, for any x̂ and â, if Ĝ1 ⊆ Ĝ2 then Ĝ1([x̂], â, ϵ) ⊆
Ĝ2([x̂], â, ϵ).

Proof. Variable lookup is encodable as a PDS reachability problem (see Lemma 7.3) and the

PDS grows monotonically with the graph Ĝ. PDS reachability grows monotonically with the PDS.

Therefore, the set of results from variable lookup grows monotonically with the graph Ĝ. □

Lemma 7.6. The evaluation relation −̂→
∗ is confluent.

Proof. By inspection of Figure 16, single-step evaluation only adds to graph Ĝ. The �Active?
relation is also clearly monotone: any enabled redex is never disabled. Confluence is trivial from

these two facts. □

Lemma 7.7. The evaluation relation −̂→
∗ is terminating, i.e. for any Ĝ0 there exists a Ĝn such that

Ĝ0 −̂→
∗ Ĝn and if Ĝn −̂→

∗ Ĝn+1, Ĝn = Ĝn+1. Furthermore, n is polynomial in the size of the initial
program.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: August 2019.

1:32 L. Facchinetti, Z. Palmer, S. Smith

Proof. By inspection of Figure 16, we have for any step Ĝ ′ −̂→
1 Ĝ ′′

that Ĝ ′ ⊆ Ĝ ′′
. The only

new nodes that can be added to Ĝ in the course of evaluation are the entry/exit nodes x̂ ′ Îc
= x̂ /

x̂
Jĉ
= x̂ ′

, and only one of each of those nodes can exist for each call site / function body pair in the

source program: ĉ is the call site, and x̂ / x̂ ′
are variables in that call site and function body source,

respectively. So, the number of nodes that can be added is always less than two times the square of

the size of the original program. A similar argument holds for added edges. □

We let Ĝ ↓ Ĝ ′
abbreviate Ĝ −̂→

∗ Ĝ ′
such that Ĝ ′ −̂→

1 Ĝ ′
. We write e ↓ Ĝ to abbreviate�Embed(e) ↓ Ĝ; this means the analysis of e returns graph Ĝ. Given the pieces assembled above, it is

now easy to prove that the analysis is polynomial-time.

Theorem 7.8. Fixing Σ to be some Σk and fixing some expression e , the analysis result Ĝ, where
e ↓ Ĝ, is computable in time polynomial in the size of e .

Proof. By Lemma 7.4, each lookup operation takes poly-time. The evaluation rules are trivial

computations besides the required lookups and, by Lemma 7.7, there are polynomially many

evaluation steps before termination. Thus e ↓ Ĝ is computable in poly-time. □

8 IMPLEMENTING LOOKUP
We showed in the previous section how lookup may be encoded as a PDS reachability question.

Although lookup on the PDS described in Section 7.1.1 is polynomial time (Lemma 7.4), the PDS is

quite large and its naive construction is slow in practice.

In this section, we formally describe pushdown reachability automata (PDR’s), which can be

viewed as syntax for schematically defining collections of PDS transitions with a single piece of

syntax, collapsing the state-space blowup alluded to above. We do not prove theoretical bounds of

the PDR – the worst case time complexity of reachability remains the same – but the evaluation

of this approach in Section 10 demonstrates that a DDPA implementation using this approach is

comparable to other recent higher-order program analyses.

8.1 Pushdown Reachability
The standard algorithm for solving pushdown reachability is to perform an edge closure [6]: for

each pair of adjacent matching push and pop edges, add a single transitive no-op edge. For any

path between two states in the original automaton, closure will ensure a path between those same

states which consists solely of no-op edges. Pushdown reachability is decidable in polynomial time

[6] but, if the number of states and edges is large, it still may be slow in practice.

To illustrate the size of the PDS described in Section 7.1.1, let us consider rule 7 of the alternative

lookup function (Definition 7.1). This rule dictates that the PDS should contain an edge for each

pairing between a variable (x̂) and an alias clause not defining that variable (x̂ ′′ = ˆb such that

x̂ ′′ , x̂); that is, this one rule increases the size of the PDS at least quadratically in the size of the

program and reachability is a polynomial of that size. In practice, most of those edges will not be

used: not every variable is looked up from every position in the CFG, if only for reasons of scope.

Previous work [24] describes an efficient algorithm for reachability on pushdown systems which

have a large number of states. This algorithm is also applied in the domain of program analysis. The

algorithm expands the automaton lazily, adding states (with their outgoing edges) as necessary to

solve the reachability query; this avoids the addition of states which are not involved in computing

reachability.

The PDS of Section 7.1.1 not only has a large number of states – one for each program point â in

each context Ĉ – but, as illustrated above, a large number of edges at each state. Our algorithm

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: August 2019.

Higher-Order Demand-Driven Program Analysis 1:33

extends the work of PDCFA [24] by representing collections of edges schematically and adding

them to the automaton on demand.

8.1.1 Formalizing Pushdown Systems. Our objective is to construct an automaton to facilitate a

reachability algorithm which produces results equivalent to that of naive pushdown reachability.

For this reason, it is useful to formalize our notion of a pushdown system. We begin by defining

common notation:

Definition 8.1. Given a finite set of stack symbols Γ, we use Γ↕ to denote the set {ϵ} ∪ {γ ↓ | γ ∈

Γ} ∪ {γ ↑ | γ ∈ Γ} of actions (no-ops, pushes, and pops) over Γ. We use γ ↕
to denote individual

elements of Γ↕. We denote the set of lists of these actions as Γ↕∗ .

Given the above, we define a pushdown system as follows:

Definition 8.2. For finite sets of statesQ and stack symbols Γ, a pushdown system (PDS) is a triple

⟨Q, Γ, δ⟩ where transition relation δ is a finite subset of Q × Γ↕ ×Q .

Note that this definition of a PDS has no marked start or finish states. We select a start state

based upon the reachability question. As mentioned in the proof of Lemma 7.3, the finish states are

those at which the PDS stack is empty.

It is also important to note that Definition 8.2 describes a “single action” pushdown system:

each transition may either push, pop, or do nothing. Other PDS definitions, such as the canonical

“single pop, multi push” formulation (in which each transition must pop one stack element and may

then push any fixed string of stack elements), may be encoded in “single action” form by adding

intermediate states.

8.2 Pushdown Reachability Automata
We now define PDRs. We will give a general PDR algebraic signature, and will also point out how

that signature is instantiated for our analysis. We begin with the domain, which is fixed throughout

closure.

Definition 8.3. A pushdown reachability domain is a finite 4-tuple ⟨S,Q, Γ,Ψ⟩ where S is a set

of pre-states, Γ are stack elements, Ψ are atomic dynamic pop actions, and Q is a fixed subset of

S × Γ↕∗ . We denote elements of Q as exponents, as in s[γ
↕, ...]

.

This defines the states and stack elements of a PDR. Pre-states S are just the core state information.

In DDPA, they are defined as contextualized states: pairs of â and Ĉ which represent the small

round nodes in Figure 11. Full PDR states Q include a pre-state element in S as well as an action
stack from Γ↕∗ . Intuitively, the PDR state s[γ

↕, ...]
expresses “I will be in state s once I complete the

actions [γ ↕, . . .].” These are the small red intermediate states in Figure 14. Lastly, the PDR domain

includes a finite set of dynamic pop actions Ψ to label actions having schematic target states; the

purpose of dynamic pop actions will be clarified below.

Next, we define the general transition function signature for a PDR.

Definition 8.4. Given a PDR domain ⟨S,Q, Γ,Ψ⟩, a pushdown reachability transition specification
is a 3-tuple ⟨t,u,p⟩ of computable functions:

• t : Q → P(Γ↕ ×Q), the targeted transitions

• u : Q → P(Ψ), the untargeted transitions

• p : Γ × Ψ → P(Q ∪ Ψ), the states and/or additional dynamic pops reached by a dynamic pop

Targeted transitions t have a concrete state target whereas untargeted transitions u have a

schematic target which is made concrete by p. We show how Definition 7.1 is given a PDR transition

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: August 2019.

1:34 L. Facchinetti, Z. Palmer, S. Smith

specification in Section 8.4 below. Together, the PDR domain and PDR transition specification

define the structure of a PDR separate from a particular reachability question.

8.3 Pushdown Reachability Closure
We now give the algorithm for the PDR reachability closure process. The objective of this process

is to yield the same results as the closure of a corresponding pushdown system. Unlike PDS closure,

which starts with all nodes and edges present, in PDR closure the states and transitions are lazily

added based on the transition specification. This lazily constructed automaton we call the PDR
graph:

Definition 8.5. Given a PDR domain ⟨S,Q, Γ,Ψ⟩, a pushdown reachability graph is a 3-tuple

⟨QC, δ ,η⟩ where

• QC ⊆ Q
• δ is a set of static transitions, a finite subset of Q × Γ↕ ×Q
• η is a set of dynamic pop transitions, a finite subset of Q × Ψ

In this definition, the set of lazily constructed current states QC
are the states in Q that are

reachable from the starting point of a query and should be explored. The set of stack action

transitions δ have the same meaning as in a PDS. Additionally, a PDR graph has a set of dynamic

pop transitions η; the only transitions in this set are those attached to states that have already

appeared in QC
. Recall from Section 3 that our goal is to determine reachability on schematic

pushdown automata; the dynamic pop transitions η act as transition generators defined by the

schema and we use them to add to the graph only those transitions which may affect the result of a

particular lookup question.

With this data structure we now begin defining the closure process for computing reachability.

For motivation, consider a PDR graph construction for our analysis: the lookup of a variable x from
a program point p in the empty (i.e. unknown) context []. To compute this closure, it is sufficient

to close over a PDR based upon the initial PDR graph ⟨{s[x
↓])},∅,∅⟩ for s = ⟨p, []⟩. This graph

contains a single state s[x
↓]
(read: “I will be in state s once I push x onto the lookup stack”) and no

transitions. The closure process will perform this push and then apply the PDR transition spec

to the resulting states, gradually expanding the graph to discover all states reachable from this

starting location.

We formally define PDR closure as follows:

Definition 8.6. For fixed PDR domain ⟨S,Q, Γ,Ψ⟩ and PDR transition spec ⟨t,u,p⟩, we define =⇒
as the least relation between PDR graphs which obeys the rules in Figure 31.

The first three rules in Figure 31 are formal presentations of the basic PDS closure algorithm

informally described in Section 8.2: when pushes can reach pops, both are canceled and a no-op

results. The Push+Dynamic Pop to State rule performs closure over the dynamic pops as described

in Section 3.2: as new push elements reach dynamic pops, the appropriate specification function

is invoked to determine the resulting destination. Note that this destination is an element of Q
with a list of pending stack actions; the Pending Action rule ensures that such states are expanded

to eventually reach their destinations. The Push+Dynamic Pop to Dynamic Pop rule performs a

similar dynamic closure: the result is another dynamic pop, which is attached to the source of the

push in a form of continuation processing discussed in Section 8.4 below. Finally, the Transition

Expansion rule ensures that we add appropriate transitions for each state; although our graph

initially contains no transitions at all, we draw transitions from functions t and u to add to the

graph as closure proceeds. Note that the other rules add states reachable via pushes and no-ops to

the QC
set, ensuring that transitions from those states will be explored.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: August 2019.

Higher-Order Demand-Driven Program Analysis 1:35

Push+Pop

(q1,γ
↓,q2) ∈ δ (q2,γ

↑,q3) ∈ δ

⟨QC, δ ,η⟩ =⇒ ⟨QC ∪ {q3}, δ ∪ {(q1, ϵ,q3)},η⟩

Push+Nop

(q1,γ
↓,q2) ∈ δ (q2, ϵ,q3) ∈ δ

⟨QC, δ ,η⟩ =⇒ ⟨QC ∪ {q3}, δ ∪ {(q1,γ
↓,q3)},η⟩

Nop+Nop

(q1, ϵ,q2) ∈ δ (q2, ϵ,q3) ∈ δ

⟨QC, δ ,η⟩ =⇒ ⟨QC ∪ {q3}, δ ∪ {(q1, ϵ,q3)},η⟩

Push+Dynamic Pop to State

(q1,γ
↓,q2) ∈ δ (q2,ψ) ∈ η q3 ∈ p(γ ,ψ)

⟨QC, δ ,η⟩ =⇒ ⟨QC ∪ {q3}, δ ∪ {(q1, ϵ,q3)},η⟩

Push+Dynamic Pop to Dynamic Pop

(q1,γ
↓,q2) ∈ δ (q2,ψ1) ∈ η ψ2 ∈ p(γ ,ψ1)

⟨QC, δ ,η⟩ =⇒ ⟨QC, δ },η ∪ {(q1,ψ2)}⟩

Pending Action

q1 = s
[γ ↕

1
,γ ↕

2
, ...,γ ↕

n] q1 ∈ QC q2 = s
[γ ↕

2
, ...,γ ↕

n]

⟨QC, δ ,η⟩ =⇒ ⟨QC ∪ {q2}, δ ∪ {(q1,γ
↕

1
,q2)},η⟩

Transition Expansion

q ∈ QC

⟨QC, δ ,η⟩ =⇒ ⟨QC, δ ∪ t(q),η ∪ u(q)⟩

Fig. 31. PDR Closure Rules

In our analysis implementation, a variety of common optimizations are applied to prevent

duplicate work and realize these rules efficiently, including an algorithm similar to the “work-list”

algorithm of PDCFA [24] (which prevents two edges from being closed with each other more than

once). Throughout closure, this algorithm ensures that only states reachable from an initial query

state via a series of push and no-op transitions are “alive”, meaning that they are the source of

transitions in the δ and η sets.

An important feature of DDPA is that the same PDR structure can be used throughout the

analysis of a particular program. This is a consequence of the monotonicity property proven in

Lemma 7.5: when performing a second variable lookup, one need only add an appropriate lookup

state to QC
and perform only the incremental new closure steps needed. This means that, if two

lookup operations’ proofs of Definition 7.1 share a derivation subtree, the closure work to establish

that portion of the proof will only be performed once. In practice, this work sharing is utilized, for

instance, whenever the analysis looks up two non-local variables from the same function; this has a

significant effect, contributing to a 1̃000x speedup relative to the proof-of-concept implementation

that does not feature work sharing (see Section 10).

8.4 From Inductive Definition to PDR Specification
Finally, we show how Definition 7.1 is expressed as a PDR. For brevity, we focus on a select few

cases of that definition. We will incrementally define the transition functions ⟨t,u,p⟩ by adding

mappings to these transition relations as the discussion proceeds; we will similarly incrementally

define the dynamic pop actions Ψ.

8.4.1 Using the Transition Functions. We begin by considering rule 1. This rule is invoked when

we discover the definition of the variable we are currently seeking, which is based upon the edges

contained within our CFG. This could be encoded in a PDS as follows: for each CFG edge with a

source clause of the form â1 = x̂ = ˆb and for each calling context Ĉ , add an edge to pop x̂ and then

push
ˆb, with the state ⟨â1, Ĉ⟩ as the ultimate destination. Since there may be many possible stack

contexts Ĉ there could be many possible edges added, illustrating the inefficiency of using a PDS

directly.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: August 2019.

1:36 L. Facchinetti, Z. Palmer, S. Smith

Rather than enumerating these edges, we can define in our PDR a function tâ1<<â0 for each CFG

edge â1 << â0 of this form:

tâ1<<â0 (⟨â0, Ĉ⟩
[]
) = {x̂ ↑ 7→ ⟨â1, Ĉ⟩

[ˆb↓]
}

This is to say that, whenever we can reach state ⟨â0, Ĉ⟩, we should add a pop of x̂ from it to

an intermediate state, which will then push
ˆb to reach state ⟨â1, Ĉ⟩. This function will be called

during PDR closure with each currently-reachable state, ensuring both that ⟨â1, Ĉ⟩ is reachable
for the lookup of x̂ (correctness) and also that these edges are only added to the PDR if a lookup

for x̂ occurs with context stack Ĉ (efficiency). Rule 1 does not require dynamic transitions, so no

additions to u or p are needed here.

8.4.2 Dynamic Operations. Some clauses base their behavior upon the contents of the stack. For

instance, rule 7 addresses clauses which do not define the variable for which we are looking. To

represent a clause x̂ ′ = x̂ ′′
in the PDS, we must be able to pop and push any variable other than x̂ ′

.

As stated above, encoding this rule in a simple PDS would require a pop-then-push transition

for each variable in the program, but most of these transitions would never be used. Many unused

transitions can be statically eliminated with simple reasoning; we can, for instance, omit transitions

for out-of-scope variables. Static elimiation is limited, however, as some transitions remain unused

during analysis simply because they are not necessary to solve the question at hand; that is, the

transition may not be necessary to look up one variable but may be necessary for another. Static

elimination is also insufficient when modeling the stack-based continuations we discuss below.

We instead represent groups of transitions succinctly using a dynamic pop action. We include

elements of the form ClauseSkip(s, x̂) in our set of dynamic pop actions Ψ. We then define a function

uâ1<<â0 for CFG edges of the form â1 = (x̂ ′ = ˆb) as follows:

uâ1<<â0 (q) =

{
{ClauseSkip(⟨â1, Ĉ⟩, x̂

′)} when q = ⟨â0, Ĉ⟩
[]

∅ otherwise

This ensures that a ClauseSkip is added to each PDR node representing this clause (in any calling

context). We then write a function p
Skip

to ensure that, when an appropriate lookup variable arrives,

it is handled correctly.

p
Skip

(ˆk, ClauseSkip(s, x̂ ′)) =

{
∅ if

ˆk not of form x̂ or if
ˆk = x̂ ′

{s[x̂
↓]} otherwise

Recall that this function is invoked by the Push+Dynamic Pop to State rule when a push for

variable x̂ arrives at the state where the ClauseSkip was added by uâ1<<â0 above. This function will

then examine x̂ . If it matches the x̂ ′
of the clause, we add no transitions to the PDR: we’ve discovered

the variable we want and the tâ1<<â0 function above will handle this case. Otherwise, we add edges

that allow the lookup to proceed by ignoring this clause and moving to the one before it.

Again, PDR closure will ensure that this only occurs for lookup variables that actually arrive at

this program point. We can safely avoid adding to our PDR the vast majority of PDS edges that this

clause would naively imply.

8.4.3 Continuations. In addition to the above-described dynamism, PDR closure can model a

rudimentary form of computation over multiple stack elements. This is best illustrated by imple-

menting rule 9 (the “capture” rule) of Definition 7.1. This rule is instrumental in the restructuring

of the lookup function to be amenable to embedding as a pushdown reachability problem: it allows

the first subordinate lookup in Definition 4.6’s rule 6 to be written as Definition 7.1’s rule 6a and

allows the result of that subordinate lookup to be stored in the stack for use by rule 6b.

The PDR is further motivated by this use case: statically constructing a pushdown system

to support capture is prohibitively expensive, as the rule must apply to any state in the PDS.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: August 2019.

Higher-Order Demand-Driven Program Analysis 1:37

q
ˆk↓
2

ˆk↓
1

Capture(2)↓ v̂↓

TryCapture1TryCapture2(v̂)DoCapture1(v̂)DoCapture2(v̂, ˆk1)

1234

ϵ ˆk↓
2

ˆk↓
1

5

Fig. 32. Example PDR Closure of “Capture”

Specializing capture to the aforementioned rules 6a and 6b would require quadratically many PDS

transitions in the number of states, while a more general form of capture applicable to e.g. binary

operators would require exponentially many transitions. As most of these transitions would be

unused and as it is not clear how to preemtively identify those transitions, we rely upon the lazy

nature of the PDR to solve this problem.

In a walk of the pushdown system, the capture behavior of rule 6a would require four pops: the

value, the capture symbol, and two arbitrary elements. As our closure algorithm only admits one

pop per transition, we encode this process by introducing four dynamic pop forms to the Ψ set.

Each dynamic pop form represents a continuation in the process of capturing a value. Figure 32

illustrates this process with a sample PDR, showing the closure process operating on the transition

functions we now describe.

We initially suppose that the PDR fragment contains only the nodes and solid edges in the middle

of the diagram. Consider a naive walk of the automaton: the sequence of push operations in the

chain of solid edges suggests that the q node can be reached with [v̂, Capture(2), ˆk1, ˆk2] as the top
four elements of the stack (with v̂ topmost). Our goal is to reorganize those stack elements in

accordance with rule 9.

We begin by adding our first new dynamic pop form, TryCapture1, to every new state. This is

accomplished by the following function:

u
TryCapture1

= {TryCapture1}

After step 1 is complete, TryCapture1 is added to the set of dynamic pop transitions by the

Transition Expansion rule (Figure 31). This is denoted in the diagram by the unlabeled edge

from q to the rectangular node below it. This dynamic pop is used to begin the capture process

whenever a value arrives. Next, we define a function which reacts to an element on top of the stack

by storing it in a dynamic pop of the form DoCapture2(v̂,) for safe keeping:
p
TryCapture2

(v̂, TryCapture1) = {TryCapture2(v̂)}
After step 2 is complete, TryCapture2(v̂) is introduced to the graph. Note that this occurs regardless

of whether a Capture(2) appears on the stack. This is a consequence of the single action model of

PDR closure and is an intentional tradeoff. The single action model may lead to the addition of

spurious TryCapture2 elements to the PDR graph, but it ensures that the work-list mentioned in

Section 8.3 is bounded quadratically by the size of the graph.

Next, we wish to pop a Capture(2) element, continuing to keep the v̂ value so we may insert it

lower in the stack. We define a function to introduce a dynamic pop DoCapture1(v̂) to reflect this:

p
DoCapture1

(Capture(2), TryCapture2(v̂)) = {DoCapture1(v̂)}

We likewise must pop
ˆk1 and, like v̂ , store it until we have enough elements to reorganize the

stack. A function introducing a dynamic pop DoCapture2(v̂, ˆk1) addresses this:

p
DoCapture2

(ˆk1, DoCapture1(v̂)) = {DoCapture2(v̂, ˆk1)}

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: August 2019.

1:38 L. Facchinetti, Z. Palmer, S. Smith

This function is step 4 in the process above. By this point, we have popped three elements from

the stack; once another element is popped, we will be ready to introduce a series of push operations

which effectively reorders the stack. We complete the process by introducing a function to do so:

p
Capture(2)(

ˆk2, DoCapture2(v̂, ˆk1)) = {q[v̂
↓, ˆk↓

2
, ˆk↓

1
]}

The above function together with the Push+Dynamic Pop to State and Pending Action rules

creates the dotted path along the top of the diagram which is labeled as step 5 . Note that the above

functions assume a fixed notion of q which was elided for simplicity. In reality, q would be included

as a parameter of each of the above dynamic pop forms.

The above demonstrates how a finite sequence of arbitrary stack operations may be encoded

in a continuation passing-like form in PDR closure. The full formal specification of DDPA uses

this technique extensively to implement features such as binary operators and state. As with other

closure operations, our use of a monotone, compact automaton yields significant work sharing

benefits

8.4.4 Decidability. Reachability is clearly decidable in a PDR due to the finiteness of the PDR

domain: it is baked into Definition 8.3.

Lemma 8.7. For fixed PDR domain ⟨S,Q, Γ,Ψ⟩ and PDR transition spec ⟨t,u,p⟩, the transitive
closure of =⇒ is computable.

In order to show our analysis is decidable we only need to show it uses a (finite) PDR domain. The

pre-states S are pairs of program points and finite call stacks, which are finite; the stack grammar Γ
is the continuation stack K̂ from Section 7, which is also finite. The set of states Q is finite because

the length of the action lists from Γ↕∗ appearing in Q is bounded by a constant; this argument is

subtle as some dynamic pop closures can lead to more elements being pushed onto the stack. With

a finite Q , the set Ψ is finite. PDR closure thus operates on finitely many possible states ⟨QC, δ ,η⟩
and so will eventually run out of new states to add.

We show in Section 10 how this algorithm is fast enough to compete with modern higher-order

demand-driven analyses.

9 EXTENSIONS
In this section, we outline four extensions: records, conditional branching, path sensitivity, and

mutable state. Our goal here is to show there is no fundamental limitation to the model given

in the previous sections: DDPA can in principle be extended to the full feature set of a realistic

programming language. For the first three extensions, we use the Overview grammar in Figure 1

and we incrementally build a theory with all three extensions since they are overlapping. For

mutable state, we show how just the core theory is extended for simplicity.

9.1 Records
Here we outline an extension to a standard notion of records and projection as per the grammar of

Figure 1. Consider a lookup of variable x̂ : if x̂ is defined as x̂ = x̂ ′.ℓ, then we must first look up x̂ ′

and then project ℓ from its record value. x̂ ′
may also be defined as a record projection and so on: in

the general case, there could be a stack of record projections to be performed. This is similar to the

non-local lookup stack of our analysis, and not coincidentally: non-locals may be encoded in terms

of records via closure conversion.

Fortunately, the continuation stack we defined in Section 7 lends itself to solving this problem.We

add to the grammar of continuation actions
ˆk a projection form .ℓ. We then augment Definition 7.1

with the following new clauses:

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: August 2019.

Higher-Order Demand-Driven Program Analysis 1:39

Definition 9.1. We extend Definition 7.1 to records by adding the following clauses; assume

â1 <� â0.

Record Projection Start

If â1 = (x̂ = x̂ ′.ℓ) and K̂ = [x̂] | | K̂ ′
then ĜL[x̂ ′, .ℓ] | | K̂ ′, â1, ĈM ⊆ V̂ .

Record Projection Stop

If â1 = (x̂ = {ℓ1 = x̂
′, . . . }) and K̂ = [x̂, .ℓ1] | | K̂

′
then ĜL[x̂ ′] | | K̂ ′, â1, ĈM ⊆ V̂ .

The two clauses above are symmetric: clause Record Projection Start introduces the pro-

jection action .ℓ when we discover that we will need to project from the variable we find while

clause Record Projection Stop eliminates this projection action when the corresponding record

value is found.

9.2 Conditional Branching
In Section 2, we give conditionals the syntax x ~p ? f : f . The analysis of conditions is straightfor-
ward: the bodies are wired in just like function calls. The following clauses may be added to the

records extension above to obtain an analysis for conditionals.

Definition 9.2. We extend Definition 4.6 to conditionals by adding the following clauses. Assume

â1 <� â0 and ĉ below is always a conditional clause.

Conditional Top

If â1 = (x̂
Îc
= x̂ ′) and K̂ = [x̂] | | K̂ ′

then ĜL[x̂ ′] | | K̂ ′, â1, ĈM ⊆ V̂ .

Conditional Bottom

If â1 = (x̂
Jĉ
= x̂ ′) and K̂ = [x̂] | | K̂ ′

then ĜL[x̂ ′] | | K̂ ′, â1, ĈM ⊆ V̂ .

Conditional Top: Non-Subject Variable

If â1 = (x̂ ′′ Îc
= x̂ ′) and K̂ = [ˆk] | | K̂ ′

such that
ˆk , x̂ ′′

, then ĜLK̂, â1, ĈM ⊆ V̂ .

In this version we do not refine the analysis based on whether the conditional pattern (abstractly)

matched or not, so the analysis is not particularly accurate. The filtering extension below gives a

much more precise analysis for conditionals.

9.3 Filtering for path sensitivity
We can formalize path sensitivity in DDPA by keeping track of sets of accumulated patterns in our

lookup function, and disallowing matches not respecting the patterns they passed through. We

use Π+ and Π−
to range over sets of patterns which a discovered value must or must not match,

respectively. Formally, we will define path-sensitive DDPA as an extension of both the core, records,

and conditionals theories.

Definition 9.3. We extend Definition 7.1 first by adding all clauses from Definitions 9.1 and 9.2. We

then modify the grammar of
ˆk to replace elements of the form x̂ with elements of the form x̂Π

+

Π− . Each

existing clause conveys these pattern sets unchanged. We then replace clause Value Discovery

of Definition 7.1 and clause Conditional Top of Definition 9.2 with the following clauses:

Matching Value Discovery

If â1 = (x̂ = v̂), K̂ = [x̂Π
+

Π−], and v̂ matches all patterns in Π+ and none in Π−
, then v̂ ∈ V̂ .

Conditional Top Positive

If â1 = (x̂
Îc
= x̂ ′), K̂ = [x̂Π

+

Π−] | | K̂ ′
, ĉ = (x̂2 = x̂1 ~ p̂ ? ˆf1 : ˆf2), ˆf1 = fun x̂ ′ -> (ê), and x̂ ∈

{x̂1, x̂
′}, then ĜL[x̂ ′Π+∪{p̂ }

Π−] | | K̂ ′, â1, ĈM ⊆ V̂ .

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: August 2019.

1:40 L. Facchinetti, Z. Palmer, S. Smith

Conditional Top Negative

If â1 = (x̂
Îc
= x̂ ′), K̂ = [x̂Π

+

Π−] | | K̂ ′
, ĉ = (x̂2 = x̂1 ~ p̂ ? ˆf1 : ˆf2), ˆf2 = fun x̂ ′ -> (ê), and x̂ ∈

{x̂1, x̂
′}, then ĜL[x̂ ′Π+

Π−∪{p̂ }] | | K̂
′, â1, ĈM ⊆ V̂ .

The Matching Value Discovery clause shows how the filters are used: any value not matching

the positive filters is discarded, and oppositely for the negative filters.

The original Conditional Top clause was the case where we reached the start of a case

clause and search variable x̂ was passed as the parameter; in that case, the clause continued by

searching for the argument at the call site. Here, we have separated that clause into two cases.

In Conditional Top Positive , the function was the first branch of a conditional, so we know

that any discovered value is only relevant if it matches the conditional’s pattern. Thus, we add the

pattern to the filter set to constrain it so. Clause Conditional Top Negative is the opposite case.

9.4 State
Lookup in the presence of state may also be performed using only a call graph, but there are several

subtle issues that must be addressed. We consider here a variation of the presentation language

which includes OCaml-style references with ref x / !x / x := x syntax.

First, a simple search back to find the most recent mutation or creation site may not always give

the correct answer as references may be changed through aliases, as illustrated in the following

pseudocode:

1 inner = ref true;

2 outer = ref inner;

3 inner := false;

4 (!outer) := 0;

If we only consider updates to the inner variable, a search for its contents by the end of

the program would incorrectly yield false. The correct answer is 0 due to the last line, which

updates the same reference cell using the contents of outer. This is the classic problem of alias
analysis: when searching for the contents of mutable variables, we must consider the possibility

that statements not directly involving the cell we are examining may update it nonetheless. So,

explicit alias testing is needed to verify potential aliases are not being passed by.

Second, we must be careful not to confuse allocation with an allocation site. Recursive functions
which allocate cells illustrate this issue. In the following code, two cells are allocated:

1 f = fun x ->

2 { cell = ref false;

3 if x then (f false, cell) else cell };

4 (a,b) = f true;

5 b := 0;

Here, the call f true returns two cells, both allocated at the site ref false. Although both ref
values are allocated at the same program point, we must recognize that they are not aliases; thus,
by the end of the program, a contains false and not 0. Recognizing this distinction requires us to

bear calling context in mind when performing alias analysis.

Not only may DDPA be adapted to address state, but the alias analysis itself may be accomplished

by the lookup function. The implementation machinery necessary to accomplish this alias analysis

is verbose. For legibility and brevity, we present the necessary steps at a high level.

We begin by adding a single bit of information to contexts in the form of a function: IsDirty(Ĉ),
which determines if a context is “dirty”. We require that the initial context is clean and that contexts

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: August 2019.

Higher-Order Demand-Driven Program Analysis 1:41

are marked dirty when precision is lost; for instance, Pop(ϵ) is dirty since the empty context ϵ
indicates that we do not know anything about the stack above the current point. Dirty contexts

will allow us to recognize the recursive case above - if the context has been pruned we cannot be

certain on an alias question.

With these functions, we present revised clauses for lookup based upon the original Definition 4.6.

Definition 9.4. Definition 4.6 is extended to a stateful language as follows. First, the codomain of

the function is modified to a set of pairs ⟨v̂, Ĉ⟩ by replacing the Value Discovery clause with the

following:

Contextual Value Discovery

If â1 = (x̂ = v̂) and X̂ = [], then ⟨v̂, Ĉ⟩ ∈ V̂ .

We write v̂ ∈ V̂ to indicate ⟨v̂, Ĉ⟩ ∈ V̂ for any Ĉ . Next, we add the following clauses:

Dereference

If â1 = (x̂ = ! x̂ ′) and â1 <� â0 then letting V̂ ′ = Ĝ([x̂ ′], â1, Ĉ), for each ref x̂ ′′ ∈ V̂ ′
,

Ĝ([x̂ ′′] | | X̂ , â1, Ĉ) ⊆ V̂ .

May Alias

If â1 = (x̂ ′
1
= x̂ ′

2
:= x̂ ′

3
), â1 <� â0, and MayAlias(x̂, x̂ ′

2
, â1, Ĉ), then ⟨ref x̂ ′

3
, Ĉ⟩ ∈ V̂ .

May Not Alias

If â1 = (x̂ ′
1
= x̂ ′

2
:= x̂ ′

3
), â1 <� â0, and MayNotAlias(x̂, x̂ ′

2
, â1, Ĉ), then Ĝ([x̂] | | X̂ , â1, Ĉ) ⊆ V̂ .

In these clauses, the terms MayAlias and MayNotAlias refer to the following predicates:

• MayAlias(x̂1, x̂2, â, Ĉ) holds iff V̂
′ = Ĝ([x̂1], â, Ĉ), V̂

′′ = Ĝ([x̂2], â, Ĉ), and ∃ref x̂
′′ ∈ (V̂ ′ ∩ V̂ ′′)

• MayNotAlias(x̂1, x̂2, â, Ĉ) holds iff V̂ ′ = Ĝ([x̂1], â, Ĉ), V̂
′′ = Ĝ([x̂2], â, Ĉ), and V̂ ′ , V̂ ′′

or

V̂ ′ , {⟨ref x̂, Ĉ ′⟩} or V̂ ′ = {⟨ref x̂, Ĉ ′′⟩} where IsDirty(Ĉ ′′)

In the above definition, clause Dereference handles dereferencing. It finds the ref values

which may be in x̂ ′
from the current point in the program; it then returns to that point to find all

of the values that those variables may contain. This return is necessary since we want the value at

the point the ! happened.

Clauses May Alias and May Not Alias address cell updates. Clause May Alias determines

if the updated cell in x̂ ′
2
may alias the cell we are looking up; if this is the case, the value assigned by

the cell update may be our answer. Clause May Not Alias addresses the case in which the updated

cellmay be different from the target of our lookup. This happens when the lookups of each variable

yield different results or when they result in multiple cells – even if the sets of cells are equal, the

orders in which the program modifies the cells might differ, so we take the conservative approach

and call them different. Here, we use the IsDirty function to address the recursive allocation case

described above. MayAlias and MayNotAlias can be simultaneously satisfiable; when that happens,

the analysis explores both clauses May Alias and May Not Alias .

Along with the above modifications, the existing clauses Skip and Function Exit need to

be extended to support state. As written, clause Skip allows us to skip by call sites and pattern

matches whose output do not match the variable for which we are searching. This is sound in a

pure system, but in the presence of side-effects we must explore these clauses to ensure that they

did not affect the cell we are attempting to dereference. We thus modify clause Skip by prohibiting

ˆb from being a call site or pattern match. We require a new clause similar to clause Function Exit

but for the case in which the search variable does not match the output variable. In that case, we

proceed into the body of the function but in a “side-effect only” mode: we skip by every clause

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: August 2019.

1:42 L. Facchinetti, Z. Palmer, S. Smith

which is not a cell assignment or does not lead to one. We leave side-effect only mode once we

leave the beginning of the function which initiated it.

10 EVALUATION
We implemented DDPA and conducted a series of experiments to determine whether it is viable.

The implementation supports the extensions described in Section 9 and is available along with the

test cases, experiment runners, and raw results.
2

10.1 Goals
We evaluated our implementation of DDPA in comparison to the proof-of-concept implementa-

tion
3
[36] and to a state-of-the-art higher-order forward analysis, P4F [19]. We had three goals:

first, our implementation must be correct and produce the same outputs as the proof-of-concept;

second, it should out-perform the proof-of-concept; and third, it should perform similar to P4F or

better.

Our implementation succeeded at the first two goals. It produces the same results as the proof-of-

concept implementation throughout a test suite designed for the latter implementation’s language.

Further, our implementation (which includes the PDR automata from Section 8) delivers a speedup of

at least 1000x over the proof-of-concept implementation. Evaluation of our third goal – performance

relative to P4F – is less straightforward and is the subject of the rest of this section.

We chose to compare to P4F because it is a recent analysis similar to ours in expressiveness:

it is flow-sensitive and polyvariant. P4F’s reference implementation
4
aligns with our DDPA im-

plementation in several ways: for example, they both lose precision on numbers and arithmetic

operations. More interestingly, we chose P4F because it allows us to shed some light into a broader

open question: the trade-offs between context-sensitivity and data-dependence [39] in analyses

for higher-order languages. DDPA and P4F represent the opposite sides of the trade-off: DDPA

approximates the call-stack and captures data dependencies exactly, while P4F captures the call-

stack exactly and approximates data dependencies. In analyses for first-order and object-oriented

languages, it is clear that context-sensitivity dominates data-dependence [55]. But the results in

the rest of this section suggest that this may not hold in higher-order languages, because DDPA

out-performs P4F in a some cases.

10.2 Test Cases
To compare P4F and DDPA, we selected a series of test cases which ran on both analyses’ imple-

mentations. Our choice of P4F limited our selection of test cases, as we were unable to run the

P4F reference implementation on bigger test cases closer to real-world programs (see Section 10.6).

Instead, we selected test cases from P4F’s reference implementation (including tests which did not

appear in the corresponding P4F paper). We also included a test case, flatten, from OOAM’s [23]

reference implementation,
5
which is the only test case in OAAM’s suite that is not included in P4F

as well and that is supported by both implementations.

Unfortunately, as of this writing no standard benchmark for higher-order program analyses

exists; however, as other evaluations in the literature use these benchmarks, they appear to be a

workable approximation for such a benchmark suite. We describe these benchmarks below:

eta Tests spurious function calls that do not affect the lookup subject.

2
https://github.com/JHU-PL-Lab/odefa/tree/toplas

3
https://github.com/JHU-PL-Lab/odefa-proof-of-concept

4
https://bitbucket.org/ucombinator/p4f-prototype

5
https://github.com/dvanhorn/oaam

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: August 2019.

https://github.com/JHU-PL-Lab/odefa/tree/toplas
https://github.com/JHU-PL-Lab/odefa-proof-of-concept
https://bitbucket.org/ucombinator/p4f-prototype
https://github.com/dvanhorn/oaam

Higher-Order Demand-Driven Program Analysis 1:43

mj09 Tests the alignments of calls and returns.

kcfa-2 and kcfa-3 The worst-case for k-CFA. Test non-local variables in increasingly nested

functions.

blur and loop2-1 Test functions with non-local variables created in a loop.

facehugger Tests recursive functions with control-flow paths that may only cross if precision

is lost.

tak and ack Test recursive functions.

cpstak Continuation passing style version of tak. Stresses the call-return alignment in our

analysis.

sat-1, sat-2 and sat-3 Brute-force SAT solver, an exponential problem. sat-1 solves a formula

with four variables, and sat-2 and sat-3 solve the same formula with seven variables, which is

defined as a curried function in sat-2 and as an uncurried function in sat-3.
flatten Flatten deeply nested lists.

map Map a function over the elements of a list.

rsa Encryption and decryption algorithms from the RSA public-key cryptosystem.

primtest Fermat primality test.

deriv Symbolic derivation.

regex Regular expression matching with derivatives.

The last four test cases are closer to real-world programs: rsa and primtest are numerical programs,

and deriv and regex manipulate lists and symbols. The other test cases are micro-benchmarks based

on common functional programming idioms. Figure 33 contains statistics on these test cases

including number of program points, number of function definitions, and so forth.

The test cases are written in Scheme and not in the language presented throughout Sections 4

through 9. In our experiments, we run DDPA on the output of a translator from Scheme to our

presented language. This translator preserves the semantics of the abstract interpretation, but it

may not preserve the concrete semantics. This compromise simplifies the analysis implementation

by reducing the number of features it must support. For example, all arithmetic operations are

translated into additions because DDPA abstracts all numbers to the same value and looses precision

on all arithmetic operations the same way. We also encode Scheme features that our implementation

does not support: for example, lists are encoded as records that represent cons cells, and functions

with multiple arguments are encoded as functions with a record argument.

10.3 Experiments
We conducted two experiments to compare our implementation to P4F’s: Monovariant, in which

we used the less expressive (and often, but not always, more performant) settings; and Polyvariant,
in which we used the more expressive settings. In Monovariant, we chose k = 0 for both analyses,

disabling context-sensitivity. In Polyvariant, we chose k = 1 for P4F, because that is the only

polyvariance setting supported by the reference implementation. But choosing k for the DDPA

implementation was less straightforward.

We could not simply choose the same k for both analyses. The variables k in DDPA and k in P4F

may share a name and serve a similar purpose (to determine the amount of context to preserve),

but they have different implications. In DDPA, k applies both to the top-level queries and to the

sub-queries necessary to fulfill it, causing the context stack to be exhausted more rapidly and the

analysis to converge sooner. When compared to P4F, the k of DDPA may have a lesser impact on

running time but may also achieve less precision.

So, when possible, we were conservative and chose k such that our analysis is at least as precise

as P4F, modeling the control-flow accurately. In other cases we defaulted to k = 1, which happened

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: August 2019.

1:44 L. Facchinetti, Z. Palmer, S. Smith

for one of three reasons. First, our analysis models the control-flow accurately with k = 0, so we

chose k = 1 in the Polyvariant experiment to distinguish it from the Monovariant experiment.

Second, no choice of k suffices, because the source of inaccuracy is a factor other than the context-

stack finitization, for example, an arithmetic operation. Third, an accurate control-flow is hard to

determine. This occurs in the bigger test cases, but k = 1 is a reasonable default for them because

they tend not to use convoluted higher-order functions. Our choice of k for each test case appears

in Figure 33.

When running the experiments, we measured running times and memory use, but could not

measure expressiveness (see Section 10.6). We ran experiments on a machine with an Intel Xeon

(3.10GHz) processor and 8GB of RAM, running Debian 9.5. The machine was dedicated to running

the experiments and the load average remained at approximately 1.

10.4 Results
We ran ten trials per test case per experiment. The running times appear in Figure 33. The memory

use remained low, never exceeding approximately 230MB, and correlates with running times: when

an analysis runs for longer, it also consumes more memory. Our analysis used 0.3x as much memory

as P4F on average, a difference we believe to be immaterial and attribute to the implementation

languages: our implementation is written in OCaml while P4F’s is written in Scala (see Section 10.6).

The dispersion in all measurements was negligible: the coefficient of variation was lower than

approximately 3%.

10.5 Analysis
In most cases, DDPA’s and P4F’s running times were within the same order of magnitude, supporting

the goal that our analysis should perform similar to P4F. But in two test cases DDPA is much

slower than P4F: deriv and regex. These test cases consist of data structure (list) manipulation and

demonstrate the effect of our analysis’ perfect continuation-stack precision. We conjecture DDPA

is slower on those cases because it is also more precise: DDPA does not lose the connection when

data flows into and out of a list, but P4F may. We leave for future work measuring how much

precision is recovered (see Section 10.6). When structure-transmitted data dependencies are not

fundamental to a program, our analysis performs similar to P4F, as illustrated by the other two test

cases closer to real-world programs, rsa and primtest, which consist of numeric operations.

Beyond our analysis and P4F, our results illuminate the trade-offs between context-sensitivity

and data-dependence [39] in analyses for higher-order languages. Our results suggest context-

sensitivity may not dominate data-dependence the same way it does in first-order and object-

oriented languages [55]. In test cases kcfa-3 and rsa, for example, our analysis out-performs P4F.

We conjecture this may be a consequence of how these languages are used: closures with non-local

variable references in functional languages are created more often and affect the analyses more

than the structure-transmitted data dependencies in object-oriented languages.

10.6 Threats to Validity
Test Cases. Our test cases represent common functional programming idioms, but they are not

at the scale of real-world programs, they do not stress the state extension, and some of them

consist of numeric operations, on which both our analysis and P4F are imprecise. Unfortunately, no

standard benchmark for higher-order analyses exists; these are the test cases used by many other

publications and so serve as an approximation for such a benchmark. This shortcoming a broader

issue on the evaluation of higher-order program analyses.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: August 2019.

Higher-Order Demand-Driven Program Analysis 1:45

1 10 10
0

10
00

10
00

0

10
00

00
28173

3828

898

919

1250

1363

626

1153

619

1381

537

473

510

622

514

498

434

450

429

714

463

553

576

563

571

481

411

456

466

447

444

427

431

454

466

427

426

419

P4F
Our Analysis

1 10 10
0

10
00

10
00

0

10
00

00

84312

9352

1798

1661

53936

82720

665

1139

1213

3219

642

519

713

1573

509

531

468

466

421

3003

469

1267

4580

5694

33866

541

427

655

566

507

642

496

550

505

506

471

449

424
Case PP FD FC VR NL LD Monovariant O÷P k Polyvariant O÷P
eta 16 4 5 13 1 1 1.02 1 0.99

mj09 18 4 6 16 3 3 1.06 M 1.04
kcfa-2 22 6 8 21 2 3 1.02 5 0.99
blur 27 3 8 30 9 2 1.07 I 1.05

facehugger 27 3 6 29 6 2 1.13 M 1.01
tak 27 1 5 39 14 2 1.44 M 2.86
ack 28 1 4 32 9 3 1.19 M 1.44

kcfa-3 30 8 11 29 3 4 1.07 7 0.81
loop2-1 33 3 5 39 12 4 1.20 M 1.27
cpstak 40 6 7 56 19 6 2.96 M 5.69
sat-1 43 7 8 43 20 5 1.36 4 1.85

flatten 50 2 5 49 9 4 2.81 1 2.67
map 54 6 10 53 7 3 1.30 1 1.23
sat-2 74 16 17 68 36 13 2.39 14 2.44
sat-3 78 11 12 73 36 8 2.22 14 9.47
rsa 126 9 15 155 39 3 1.60 H 0.36

primtest 128 5 9 141 45 9 1.62 M 1.42
deriv 203 5 13 200 27 7 8.27 I 19.94
regex 314 24 51 326 113 8 39.46 H 28.08

Running 
Time (ms)

Fig. 33. The first section characterizes the input programs, which are sorted by number of program points.
PP: Program Points. FD: Function Definitions. FC: Function Calls. VR: Variable References. NL: Non-Local
Variable References. LD: Lexical Depth. The remaining two sections are the results of the two experiments:
Monovariant and Polyvariant. In Monovariant, k = 0. In Polyvariant, k = 1 for P4F and the k column lists
the choices for DDPA. Numbers represent DDPA builds an accurate control-flow model, in all other cases we
default to k = 1. M: A monovariant DDPA also models control-flow accurately. I: The control-flow model is
inaccurate for all k for a reason other than the context-stack finitization, for example, an arithmetic operation.
H: An accurate control-flow model is hard to determine. The bar graphs are the arithmetic mean of the
running times of ten trials; we omit the error bars because the dispersion was negligible (in all cases the
coefficient of variation was lower than approximately 3%). The columns labeled O÷P are the running times of
DDPA normalized with respect to P4F.

We settled for these test cases because, to compare the implementations of DDPA to P4F, we

required cases which run in both implementations. This limited our choices, because P4F’s reference

implementation does not support features necessary to analyze many bigger programs and, even

when it does, it may fail due to what appears to be an implementation bug. P4F terminates with an

exception and does not produce a result when a non-function appears to flow into the operator

position of a function call. This occurs regardless of whether the test case really contains an ill-

formed function call or the analysis overapproximated. The minimal non-trivial Scheme program

that triggers this behavior is the following:

1 (define f (if (< 1 2) (lambda (x) x) #t))

2 (f 3)

P4F’s reference implementation loses precision on the condition and allows #t to flow into f.
It then throws an exception when it reaches the function call because #t is not a function. Our

implementation loses precision on the condition in a similar fashion, but it succeeds to analyze the

function call and even detects that it may be ill-formed. Our implementation also ran on bigger

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: August 2019.

1:46 L. Facchinetti, Z. Palmer, S. Smith

test cases that are closer to real-world programs, but they were excluded from the experiments for

the lack of a P4F baseline.

We worked around this problem by selecting test cases available in P4F’s reference implementa-

tion. We plan to address the broader issue of evaluating higher-order program analyses in future

work.

Expressiveness Measurements. A general metric for expressiveness cannot exist, because different

analyses may capture different program properties and their outputs may be incomparable. Other

evaluations in the literature work around this issue by measuring expressiveness via a proxy, either

an intrinsic analysis property or a client. For example, Earl et al. [12] measures an intrinsic property,

the number of singletons (abstract value sets containing a single function); and Might et al. [34]

uses a client, the number of function inlinings justified by the analyses.

Unfortunately, neither approach is practical for comparing DDPA to P4F because the analyses do

not share technical foundations. Intrinsic properties of the analyses are too far apart; for example,

our analysis would be at an unfair advantage if we compared the number of singletons, because

P4F’s abstract functions include an abstract environment while DDPA’s abstract functions do not.

(Instead, DDPA relies on non-local variable lookups.) These differences also account for part of the

reason why designing and implementing a client compatible with both analyses is an engineering

problem of its own, which we leave for future work.

When possible, we worked around this issue by conservatively choosing k for our analysis such

that it is as precise as, or more precise than, P4F. We will be able to fine tune this choice when we

have a client compatible with both analyses.

Experimental Setup. We implemented DDPA in OCaml. P4F’s reference implementation is written

in Scala. The general performance difference between these languages is negligible for our purposes.

11 RELATEDWORK
DDPA uses many concepts of first-order demand-driven CFL-reachability analyses [21] to give

precise analysis of higher-order functions: like demand-driven CFL-reachability analyses, DDPA

is centered around using a CFG to look up variable values in a demand-driven fashion, calls and

returns are aligned, and lookup is computed lazily. Two issues make a higher-order analysis more

challenging: the CFG needs to be computed on-the-fly due to the presence of higher-order functions,

and non-local variable lookup is subtle. The demand-driven analyses cited in this paper delve further

into the trade-off between active propagation and demand-driven lookup, and this is something

we plan to explore in future work. There are many other first-order program analyses with a

demand-driven component; several use Datalog-style specification formats [42, 46, 56].

The challenges we face in precise non-local variable lookup are related to data propagation

challenges in first-order languages. Intuitively, one might attempt to address non-local variables

via a closure conversion pass [5]: we can explicitly add closure structures to the language syntax

and function values become pairs between the function’s code and a list or record containing the

non-local values. While this translates the challenge into the first-order analysis space, however, it is

not any easier to solve: the problem of finding the correct binding for a non-local variable is now the

problem of accessing the correct field in a list or record. This problem is known to be difficult even

in first-order program analyses: Reps [39] proved that these structure-transmitted data dependences
are impossible to track perfectly. The tight relationship between the analyses of non-local lookup

and of structured data lookup is clear in DDPA: both non-locals and record accesses use the same

continuation stack as per Section 9, and the requirement for a second fully-precise (call) stack leads

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: August 2019.

Higher-Order Demand-Driven Program Analysis 1:47

to the undecidability of ωDDPAc. There does not appear to be any mention of this connection

between first-order data dependencies and higher-order non-local variable accesses in the literature.

Some first-order analyses also track structure-transmitted data dependencies (e.g. LCL-reachability

analysis [55]) are in a similar design space as DDPA but have a different optimization function. In

higher-order analyses, the loss of data dependencies causes imprecision in closure lookup, which

rapidly pollutes the CFG and degrades analysis precision. For this reason, DDPA preserves a perfect

stack for data dependencies and approximates the call stack only. First-order analyses sometimes

sacrifice data dependence precision to improve call stack precision as there is a less drastic fall-off

in overall precision when data dependencies are imperfect.

DDPA Compared with higher-order forward analyses
Comparing DDPA with the extensive literature of higher-order forward analyses is a difficult task:

while there are a great many overlapping concepts, they don’t precisely align and so it is hard

to make accurate comparisons. Here it will have to suffice to point out some commonalities and

differences.

Higher-order program analyses are generally based on abstract interpretations [8]; such analyses

define a finite-state abstraction of the operational semantics transition relation to soundly approxi-

mate the program’s runtime behavior. The resulting analysis has the same general structure as the

operational semantics it was based on: program points, environments, stacks, stores, and addresses

are replaced with abstract counterparts which have finite cardinality, “hobbling” the full operational

semantics of the language to guarantee termination of the analysis [31]. A sound analysis will

visit the (finitely many) abstract counterparts of all reachable concrete program states, producing a

finite automaton representing all potential program runs. Previous abstract interpretation based

higher-order program analyses are forward analyses [11, 24, 29, 31, 34, 35, 44, 52].

Non-local variables. Dealing properly with non-local variables is a longstanding concern in higher-
order program analyses; the classic environment problem [18, 30, 44] centers around obtaining

precision in analyzing non-locals.

Perhaps the biggest contribution of DDPA is how our notion of call-return alignment also aligns

non-local variables; this is the purpose of the additional non-locals stack which is not found in any

previous work. Other works incorporating call-return alignment lack this non-locals stack and so

do not obtain the degree of expressiveness we do with only call-return alignment. The particular

advantage of aligning both locals and non-locals is that a full polymorphism model is obtained

comparable to kCFA [44], without any explicit machinery for polymorphism.

In previous higher-order demand-driven analysis work non-local variables are not aligned and

so call-return alignment cannot fully replace polymorphism – explicit let-polymorphism is also

included [14, 37]. Another analysis in this space, Boomerang [47], targets Java and also does not

address call-return alignment for non-local variables. None of this previous work is flow-sensitive.

Some higher-order forward analyses incorporate call-return alignment [19, 24, 51], but they

also do not align non-local variables. One sign of how DDPA is more powerfully aligning calls

and returns than these works is that ωDDPAc, DDPA without a pruned call stack, is undecidable,

whereas these analyses are decidable with a full call stack. So, we are losing a full call stack, but

gaining accuracy on non-local variables. These analyses incorporate other elements to achieve a

fuller effect of polymorphism: CFA2 [51] additionally uses a polymorphism model similar to CPA

[1], with a different contour allocated for each different function argument; PDCFA [24] includes

an (abstracted) call stack in the program state; and, P4F [19] includes an orthogonal polymorphism

layer of the kCFA variety. DDPA’s improved precision on non-local variables is still insufficient

for more sophisticated clients including environment analysis [32], because it does not preserve

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: August 2019.

1:48 L. Facchinetti, Z. Palmer, S. Smith

information about allocations of concrete vs. abstract bindings, but a variation on DDPA called

DRSF addresses this shortcoming [13]. Our PDR automata build on ideas in PDCFA [24] to achieve

more efficient reachability results.

Polymorphism and runtime complexity. Another important dimension of expressiveness is poly-

morphism aka context-sensitivity: whether functions can take on different forms in different

contexts of use. The classic higher-order analysis polymorphism model is kCFA [44], which copies

contours in analogy to forall-elimination in a polymorphic type system. But there are many routes

to behavior that appears as polymorphism, and, as mentioned in the previous paragraph, call-return

alignment can provide different contexts for different function calls and achieves the same effect

as polymorphism in DDPA. The example we gave in Figure 3, for instance, needs only call-return

alignment to give polyvariant behavior in DDPA. Another example of polymorphism as an emer-

gent phenomenon of other program analysis features is the abstract garbage collection in ΓCFA,
which can align calls and returns in tail position, for example, in the example program in Section 2.2

[32, § 6.6].

Even though we are using a call-stack approximation k levels deep in a similar fashion as kCFA,
keeping the most-recent k frames, kDDPA polymorphism is not equivalent to kCFA. One sign
that it must be different is that 1DDPA is provably polynomial (Theorem 7.8) whereas 1CFA is

EXPTIME-complete [49]. The difference is that DDPA must also “spend” stack frames searching for

the functions where non-local variables were defined, and so for non-local variables requires more

stack frames to get the same approximation. We conjecture that, for a program with a maximal

lexical nesting depth of d , the analysis (k + d)DDPA will be at least as expressive as kCFA. The
additional d levels are needed because each lexical level gives the potential for one more level

needed to search through to find the original definition of a non-local variable, in analogy with

d-stages access links in a compiler implementation of non-locals. Each lexical level will entail its

defining function being added to the call stack, and overall one extra function will appear per

lexical level.

Insights into the run-time complexity of kDDPA are also gained when considering the complexity

of non-local variable polymorphism. Non-locals are the (only) source of exponential behavior in

kCFA [34, 50]; in particular, if lexical nesting were assumed to be of some constant depth not tied

to the size of the program, kCFA would not be exponential. The complexity of kDDPA comes from

the other direction: for any fixed k , the algorithm kDDPA is polynomial; but k needs to be increased

by one for each level of stack alignment we wish to achieve in non-local lookup. Related to this are

provably polynomial context-sensitive analyses which, like kDDPA, restrict context-sensitivity in

the case of high degree of lexical nesting [22, 34].mCFA [34] is a polyvariant analysis hierarchy for

functional languages that is provably polynomial in complexity. This is achieved by an analysis that

“in spirit” is working over closure-converted source programs: by factoring out all non-local variable

references, their worst-case behavior has also been removed. But, this also affects the precision of

the analysis: non-locals that are distinguished in kCFA are merged inmCFA. In kDDPA, the level
of non-local precision is built into the constant k of how deep the run-time stack approximation is,

so more precision is achieved as k increases.

The need for call stack approximation. DDPA requires the call stack to be finitely approximated

to at most k frames in kDDPA. The call stack in fact has to be approximated by Theorem 5.19: the

unbounded-stack ωDDPAc is a full and faithful λ-calculus interpreter. Still, kDDPA is currently

wasteful on recursion, often unrolling a recursive function k levels only to see them all merge.

We plan to address this shortcoming in future work. Note that higher-order analyses run into a

similar problem; for example, kCFA keeps a k-depth stack, ∆CFA’s [32] ∆-frame strings are finite

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: August 2019.

Higher-Order Demand-Driven Program Analysis 1:49

approximations, and PDCFA [24] must regularize the call stack to incorporate abstract garbage

collection in a decidable fashion.

Path sensitivity and must analysis. DDPA only has a weak notion of path-sensitivity via the filters

of Section 9.3. It also has only a primitive must-alias analysis in the mutable state extension in

Section 9.4. So in these dimensions it is currently short of the state-of-the-art of forward analyses

and represents an avenue for future work.

In the end, forward- and reverse- higher order program analyses are in parallel universes: many

things appear the same but are subtly different, and some things that appear to be very different are

in fact achieving a very similar effect. This shows up in the performance evaluation of Section 10:

DDPA does much better on some examples compared to forward analyses, and much worse on

others. The fact that the performance varies so widely implies their theoretical basis is also far

apart, and points out that demand-driven analyses have the potential to bring new expressiveness

and performance advances to higher-order program analyses.

11.1 Implementation Techniques
The technique of looking up variables on-demand and of aligning calls and returns was first

developed in so-called CFL-reachability analyses for first-order languages [10, 21, 38, 40]. To solve

the call-return alignment problem some reduction to grammars or automata or other formalism is

needed, and several different approaches have been used. CFL-reachability reduces to a context-free

language question [40], and reduction to pushdown automata formalisms were used for other

first-order analyses [41]. In DDPA, we utilize the pushdown stack differently. The unbounded-stack

case, ωDDPAc, is undecidable, so we needn’t align calls and returns with the pushdown stack;

however, we still need a continuation stack for non-locals lookup and other actions. This leads us

to the use of pushdown systems in the implementation of our analysis and, ultimately, the PDR

that was described in Section 8.

Considerable study ([4, 7, 26] among numerous others) has been made of pushdown-like au-

tomata and their reachability properties. Notably, although reachability on unrestricted two-stack

pushdown automata is undecidable, restricted multi-stack pushdown automata have proven to be

useful approximations in program analyses. One avenue of future work is the exploration of such

automata as a basis for a DDPA-like analysis.

Our PDR automata were partly inspired by PDCFA [24], which computes pushdown reachability

by maintaining a “compact” structure: only states stemming from the start state are analyzed. Like

that work, our PDR incrementally introduces transitions according to a general schema as they

become relevant to reachability. Unlike PDCFA [24], however, our PDR closure algorithm retains

a schematic form of transitions as they are introduced; this leads to smaller automata and less

redundant effort, something that is particularly applicable to our domain. We then utilize this

mechanism to develop a form of “continuation programming” on the automaton, which can handle

the more complex clauses of variable lookup (including deep pattern matching). We are unaware of

any work which performs this sort of non-trivial “pushdown reachability programming,” and it

may be a technique applicable to other domains.

Other researchers have taken a related approach of “compiling an analysis” to logic programming

or Datalog DSLs [42, 46, 56]. We expect the implementation of this paper could also be mapped

onto Datalog, but we have chosen to take the PDR route as it encapsulates a simpler (polynomial vs

not) complexity class and hope to thereby achieve better performance in the long run. Reduction

to set constraints is also polynomial [25, 28] and so could be an alternative compilation strategy

worthy of study.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: August 2019.

1:50 L. Facchinetti, Z. Palmer, S. Smith

11.2 Other DDPA Precursors
DDPA in fact was not derived from first-order demand-driven analyses; it emerged as a flow-

sensitive extension of subtype constraint theory [2]. Each abstract program clause corresponds 1-1

to a subtype constraint; DDPA’s addition is the happens-before relation which temporally relates

the subtype flows.

The sharing of the CFG and the labels added to refine lookup was inspired by the sharing graphs

of optimal λ-reduction [27]. In both DDPA and sharing graphs, the non-locals are not copied in but

rather looked up via a careful trace back to their originating definition, with information added to

paths to refine lookup accuracy – fan-in and fan-out nodes in optimal reduction, and zI/ zJ in

DDPA.

We are not the first to be inspired by sharing graphs for program analyses; but the existing work

is closer to a subtype constraint inference system than to DDPA because, while sharing graphs are

used, non-local arguments are wired in directly [49].

We are not the first to propose program analyses for higher-order languages that have a “demand

driven” component [9, 48]. Dubé and Feeley [9] propose an analysis which iterates between a

standard forward pass and a refinement pass which re-tunes the (forward) analysis based on the

results of the previous pass, demanding more precision only where it is needed, and then making

another pass. This analysis is thus demand-driven in a different sense than DDPA – at the root it

is a forward analysis. DDP [48] is more demand-driven in our sense in that it has a value lookup

process which is explicitly goal-directed. Like Dubé it incorporates an alternating demand-driven

and forward data flow algorithm, at a smaller scale. DDP is focused on object-oriented programs so

is not addressing the non-locals issue of functional programs, and it is flow-insensitive. Also, DDP

queries cannot share intermediary results the same way DDPA lookups do, because the DDP query

that runs first may prune a subgoal that is distant from it, giving it an overapproximate solution

that is trivially true, and precision on that subgoal may be essential to a later query.

12 CONCLUSION
In this paper, we have developed a demand-driven program analysis (DDPA) for higher-order

programs, extending ideas of first-order demand-driven analyses to higher-order functions. The

primary novelty is the use of a separate non-locals stackwhich allows call-return alignment to strictly

subsume polymorphism; previous higher-order demand-driven analyses did not align non-locals.

DDPA has flow-, context-, and (limited) path-sensitivity as naturally emergent properties.

We believe DDPA shows promise primarily because it represents a significantly different approach

compared with the existing large literature of higher-order program analyses. A high-level analogy

can be made with eager and lazy programming languages: it is a fundamental decision in language

design which approach to take and there are significant trade-offs. We believe the demand-driven

side of higher-order program analyses deserves further exploration.

We have established soundness of DDPA and proved a polynomial-time bound on kDDPA. The
abstract call stack must be restricted to at most k frames, unlike in first-order demand-driven anal-

yses: we show that ωDDPAc, DDPA with an unbounded call stack, fully and faithfully implements

the λ-calculus and so is Turing-complete.

We described our implementation of DDPA which uses a novel Pushdown Reachability (PDR)

automaton, a higher-order abstraction of a PDA which significantly improves the efficiency of

variable value lookup. We gave a high-level specification of the implementation and presented

benchmark results that shows demand-driven analyses have very different trade-offs compared

to forward analyses, meaning they show promise for improving analysis expressiveness and

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: August 2019.

Higher-Order Demand-Driven Program Analysis 1:51

performance. The implementation includes a broader feature set than the theoretical treatment,

showing the methodology can scale.

REFERENCES
[1] Ole Agesen. 1995. The Cartesian Product Algorithm: Simple and Precise Type Inference of Parametric Polymorphism.

In Proceedings of the 9th European Conference on Object-Oriented Programming (ECOOP ’95). Springer-Verlag, Berlin,
Heidelberg, 2–26. http://dl.acm.org/citation.cfm?id=646153.679533

[2] Alexander Aiken and Edward L. Wimmers. 1993. Type Inclusion Constraints and Type Inference. In Proceedings of the
Conference on Functional Programming Languages and Computer Architecture (FPCA ’93). ACM, New York, NY, USA,

31–41. https://doi.org/10.1145/165180.165188

[3] Rajeev Alur, Ahmed Bouajjani, and Javier Esparza. 2012. Handbook of Model Checking. Springer, Chapter Model

Checking Procedural Programs, 541–572.

[4] Rajeev Alur and P. Madhusudan. 2004. Visibly Pushdown Languages. In Proceedings of the Thirty-sixth Annual ACM
Symposium on Theory of Computing.

[5] Andrew W. Appel. 2007. Compiling with Continuations. Cambridge University Press, New York, NY, USA.

[6] Ahmed Bouajjani, Javier Esparza, and Oded Maler. 1997. Reachability Analysis of Pushdown Automata: Application to

Model-Checking. In Proceedings of the 8th International Conference on Concurrency Theory (CONCUR ’97). Springer-
Verlag, Berlin, Heidelberg, 135–150. http://dl.acm.org/citation.cfm?id=646732.701281

[7] José Castano. 2004. Global Index Languages. Ph.D. Dissertation.
[8] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: AUnified LatticeModel for Static Analysis of Programs

by Construction or Approximation of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on Principles
of Programming Languages (POPL ’77). ACM, New York, NY, USA, 238–252. https://doi.org/10.1145/512950.512973

[9] Danny Dubé and Marc Feeley. 2002. A Demand-driven Adaptive Type Analysis. In Proceedings of the Seventh ACM
SIGPLAN International Conference on Functional Programming (ICFP ’02). ACM, New York, NY, USA, 84–97. https:

//doi.org/10.1145/581478.581487

[10] Evelyn Duesterwald, Rajiv Gupta, andMary Lou Soffa. 1997. A Practical Framework for Demand-Driven Interprocedural

Data Flow Analysis. ACM Transactions on Programming Languages and Systems (TOPLAS) 19, 6 (Nov. 1997), 992–1030.
https://doi.org/10.1145/267959.269970

[11] Christopher Earl, Matthew Might, and David Van Horn. 2010. Pushdown Control-Flow Analysis of Higher-Order

Programs. InWorkshop on Scheme and Functional Programming.
[12] Christopher Earl, Ilya Sergey, Matthew Might, and David Van Horn. 2012. Introspective Pushdown Analysis of

Higher-order Programs. In Proceedings of the 17th ACM SIGPLAN International Conference on Functional Programming
(ICFP ’12). ACM, New York, NY, USA, 177–188. https://doi.org/10.1145/2364527.2364576

[13] Leandro Facchinetti, Zachary Palmer, and Scott F. Smith. 2017. Relative Store Fragments for Singleton Abstraction. In

Static Analysis, Francesco Ranzato (Ed.). Springer International Publishing, Cham, 106–127.

[14] Manuel Fähndrich, Jakob Rehof, and Manuvir Das. 2000. Scalable Context-Sensitive Flow Analysis Using Instantiation

Constraints. In Proceedings of the ACM SIGPLAN 2000 Conference on Programming Language Design and Implementation
(PLDI ’00). ACM, New York, NY, USA, 253–263. https://doi.org/10.1145/349299.349332

[15] Matthias Felleisen and Daniel P. Friedman. 1986. Control Operators, the SECD-Machine, and the Lambda-Calculus. In

3rd Working Conference on the Formal Description of Programming Concepts.
[16] Matthias Felleisen and Robert Hieb. 1992. The Revised Report on the Syntactic Theories of Sequential Control and

State. Theoretical Computer Science 103, 2 (Sept. 1992), 235–271. https://doi.org/10.1016/0304-3975(92)90014-7
[17] Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. 1993. The Essence of Compiling with Continua-

tions. In Proceedings of the ACM SIGPLAN 1993 Conference on Programming Language Design and Implementation (PLDI
’93). ACM, New York, NY, USA, 237–247. https://doi.org/10.1145/155090.155113

[18] Kimball Germane and Matthew Might. 2017. A Posteriori Environment Analysis with Pushdown Delta CFA. In

Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages (POPL 2017). ACM, New

York, NY, USA, 19–31. https://doi.org/10.1145/3009837.3009899

[19] Thomas Gilray, Steven Lyde, Michael D. Adams, Matthew Might, and David Van Horn. 2016. Pushdown Control-flow

Analysis for Free. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL ’16). ACM, New York, NY, USA, 691–704. https://doi.org/10.1145/2837614.2837631

[20] Nevin Heintze and Olivier Tardieu. 2001. Demand-Driven Pointer Analysis. In Proceedings of the ACM SIGPLAN
2001 Conference on Programming Language Design and Implementation (PLDI ’01). ACM, New York, NY, USA, 24–34.

https://doi.org/10.1145/378795.378802

[21] Susan Horwitz, Thomas Reps, and Mooly Sagiv. 1995. Demand Interprocedural Dataflow Analysis. In Proceedings of
the 3rd ACM SIGSOFT Symposium on Foundations of Software Engineering (SIGSOFT ’95). ACM, New York, NY, USA,

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: August 2019.

http://dl.acm.org/citation.cfm?id=646153.679533
https://doi.org/10.1145/165180.165188
http://dl.acm.org/citation.cfm?id=646732.701281
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/581478.581487
https://doi.org/10.1145/581478.581487
https://doi.org/10.1145/267959.269970
https://doi.org/10.1145/2364527.2364576
https://doi.org/10.1145/349299.349332
https://doi.org/10.1016/0304-3975(92)90014-7
https://doi.org/10.1145/155090.155113
https://doi.org/10.1145/3009837.3009899
https://doi.org/10.1145/2837614.2837631
https://doi.org/10.1145/378795.378802

1:52 L. Facchinetti, Z. Palmer, S. Smith

104–115. https://doi.org/10.1145/222124.222146

[22] Suresh Jagannathan and Stephen Weeks. 1995. A Unified Treatment of Flow Analysis in Higher-order Languages. In

Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’95). ACM,

New York, NY, USA, 393–407. https://doi.org/10.1145/199448.199536

[23] J. Ian Johnson, Nicholas Labich, Matthew Might, and David Van Horn. 2013. Optimizing Abstract Abstract Machines.

In Proceedings of the 18th ACM SIGPLAN International Conference on Functional Programming (ICFP ’13). ACM, New

York, NY, USA, 443–454. https://doi.org/10.1145/2500365.2500604

[24] J. Ian Johnson, Ilya Sergey, Christopher Earl, Matthew Might, and David Van Horn. 2014. Pushdown flow analysis

with abstract garbage collection. Journal of Functional Programming 24, 2-3 (2014), 218–283. https://doi.org/10.1017/

S0956796814000100

[25] John Kodumal and Alex Aiken. 2004. The Set Constraint/CFL Reachability Connection in Practice. In Proceedings of
the ACM SIGPLAN 2004 Conference on Programming Language Design and Implementation (PLDI ’04). ACM, New York,

NY, USA, 207–218. https://doi.org/10.1145/996841.996867

[26] Salvatore La Torre and Margherita Napoli. 2011. Reachability of Multistack Pushdown Systems with Scope-Bounded

Matching Relations. In CONCUR 2011 – Concurrency Theory.
[27] John Lamping. 1990. An Algorithm for Optimal Lambda Calculus Reduction. In Proceedings of the 17th ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages (POPL ’90). ACM, New York, NY, USA, 16–30. https:

//doi.org/10.1145/96709.96711

[28] David Melski and Thomas Reps. 1997. Interconvertbility of Set Constraints and Context-Free Language Reachability.

In Proceedings of the 1997 ACM SIGPLAN Symposium on Partial Evaluation and Semantics-based Program Manipulation
(PEPM ’97). ACM, New York, NY, USA, 74–89. https://doi.org/10.1145/258993.259006

[29] Jan Midtgaard. 2012. Control-flow Analysis of Functional Programs. ACM Computing Surveys (CSUR) 44, 3, Article 10
(June 2012), 33 pages. https://doi.org/10.1145/2187671.2187672

[30] MatthewMight. 2007. Environment Analysis of Higher-order Languages. Ph.D. Dissertation. Atlanta, GA, USA. Advisor(s)
Shivers, Olin G. AAI3271560.

[31] Matthew Might. 2010. Abstract Interpreters for Free. In Proceedings of the 17th International Conference on Static
Analysis (SAS’10). Springer-Verlag, Berlin, Heidelberg, 407–421. http://dl.acm.org/citation.cfm?id=1882094.1882119

[32] Matthew Might and Olin Shivers. 2006. Environment Analysis via ∆CFA. In Conference Record of the 33rd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’06). ACM, New York, NY, USA, 127–140.

https://doi.org/10.1145/1111037.1111049

[33] Matthew Might and Olin Shivers. 2006. Improving Flow Analyses via ΓCFA: Abstract Garbage Collection and Counting.

In Proceedings of the Eleventh ACM SIGPLAN International Conference on Functional Programming (ICFP ’06). ACM,

New York, NY, USA, 13–25. https://doi.org/10.1145/1159803.1159807

[34] Matthew Might, Yannis Smaragdakis, and David Van Horn. 2010. Resolving and Exploiting the k-CFA Paradox:

Illuminating Functional vs. Object-oriented Program Analysis. In Proceedings of the 31st ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ’10). ACM, New York, NY, USA, 305–315. https://doi.org/10.

1145/1806596.1806631

[35] Flemming Nielson, Hanne R. Nielson, and Chris Hankin. 1999. Principles of Program Analysis. Springer-Verlag, Berlin,
Heidelberg.

[36] Zachary Palmer and Scott F. Smith. 2016. Higher-Order Demand-Driven Program Analysis. In 30th European Conference
on Object-Oriented Programming (ECOOP 2016) (Leibniz International Proceedings in Informatics (LIPIcs)), Shriram
Krishnamurthi and Benjamin S. Lerner (Eds.), Vol. 56. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl,

Germany, 19:1–19:25. https://doi.org/10.4230/LIPIcs.ECOOP.2016.19

[37] Jakob Rehof and Manuel Fähndrich. 2001. Type-base Flow Analysis: From Polymorphic Subtyping to CFL-reachability.

In Proceedings of the 28th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’01). ACM,

New York, NY, USA, 54–66. https://doi.org/10.1145/360204.360208

[38] Thomas Reps. 1995. Shape Analysis As a Generalized Path Problem. In Proceedings of the 1995 ACM SIGPLAN
Symposium on Partial Evaluation and Semantics-based Program Manipulation (PEPM ’95). ACM, New York, NY, USA,

1–11. https://doi.org/10.1145/215465.215466

[39] Thomas Reps. 2000. Undecidability of Context-sensitive Data-dependence Analysis. ACM Transactions on Programming
Languages and Systems (TOPLAS) 22, 1 (Jan. 2000), 162–186. https://doi.org/10.1145/345099.345137

[40] Thomas Reps, Susan Horwitz, and Mooly Sagiv. 1995. Precise Interprocedural Dataflow Analysis via Graph Reachability.

In Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’95).
ACM, New York, NY, USA, 49–61. https://doi.org/10.1145/199448.199462

[41] Thomas Reps, Akash Lal, and Nick Kidd. 2007. Program Analysis Using Weighted Pushdown Systems. In Proceedings of
the 27th International Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS’07).

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: August 2019.

https://doi.org/10.1145/222124.222146
https://doi.org/10.1145/199448.199536
https://doi.org/10.1145/2500365.2500604
https://doi.org/10.1017/S0956796814000100
https://doi.org/10.1017/S0956796814000100
https://doi.org/10.1145/996841.996867
https://doi.org/10.1145/96709.96711
https://doi.org/10.1145/96709.96711
https://doi.org/10.1145/258993.259006
https://doi.org/10.1145/2187671.2187672
http://dl.acm.org/citation.cfm?id=1882094.1882119
https://doi.org/10.1145/1111037.1111049
https://doi.org/10.1145/1159803.1159807
https://doi.org/10.1145/1806596.1806631
https://doi.org/10.1145/1806596.1806631
https://doi.org/10.4230/LIPIcs.ECOOP.2016.19
https://doi.org/10.1145/360204.360208
https://doi.org/10.1145/215465.215466
https://doi.org/10.1145/345099.345137
https://doi.org/10.1145/199448.199462

Higher-Order Demand-Driven Program Analysis 1:53

Springer-Verlag, Berlin, Heidelberg, 23–51. http://dl.acm.org/citation.cfm?id=1781794.1781799

[42] Thomas W. Reps. 1995. Demand Interprocedural Program Analysis Using Logic Databases. Springer US, Boston, MA,

163–196. https://doi.org/10.1007/978-1-4615-2207-2_8

[43] Diptikalyan Saha and C. R. Ramakrishnan. 2005. Incremental and Demand-Driven Points-to Analysis Using Logic

Programming. In Proceedings of the 7th ACM SIGPLAN International Conference on Principles and Practice of Declarative
Programming (PPDP ’05). ACM, New York, NY, USA, 117–128. https://doi.org/10.1145/1069774.1069785

[44] Olin Grigsby Shivers. 1991. Control-flow Analysis of Higher-order Languages. Ph.D. Dissertation. Pittsburgh, PA, USA.
UMI Order No. GAX91-26964.

[45] Jeffrey Mark Siskind. 1999. Flow-Directed Lightweight Closure Conversion. Technical Report.
[46] Yannis Smaragdakis and Martin Bravenboer. 2011. Using Datalog for Fast and Easy Program Analysis. In Proceedings

of the First International Conference on Datalog Reloaded (Datalog’10). Springer-Verlag, Berlin, Heidelberg, 245–251.
https://doi.org/10.1007/978-3-642-24206-9_14

[47] Johannes Späth, Lisa Nguyen Quang Do, Karim Ali, and Eric Bodden. 2016. Boomerang: Demand-Driven Flow- and

Context-Sensitive Pointer Analysis for Java. In 30th European Conference on Object-Oriented Programming (ECOOP
2016) (Leibniz International Proceedings in Informatics (LIPIcs)), Shriram Krishnamurthi and Benjamin S. Lerner (Eds.),

Vol. 56. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 22:1–22:26. https://doi.org/10.4230/

LIPIcs.ECOOP.2016.22

[48] S. Alexander Spoon and Olin Shivers. 2004. Demand-Driven Type Inference with Subgoal Pruning: Trading Precision

for Scalability. In European Conference on Object-Oriented Programming (ECOOP), Martin Odersky (Ed.). Springer Berlin

Heidelberg, Berlin, Heidelberg, 51–74.

[49] David Van Horn and Harry G. Mairson. 2007. Relating Complexity and Precision in Control Flow Analysis. In

Proceedings of the 12th ACM SIGPLAN International Conference on Functional Programming (ICFP ’07). ACM, New York,

NY, USA, 85–96. https://doi.org/10.1145/1291151.1291166

[50] David Van Horn and Harry G. Mairson. 2008. Deciding kCFA is Complete for EXPTIME. In Proceedings of the 13th
ACM SIGPLAN International Conference on Functional Programming (ICFP ’08). ACM, New York, NY, USA, 275–282.

https://doi.org/10.1145/1411204.1411243

[51] Dimitrios Vardoulakis and Olin Shivers. 2010. CFA2: A Context-Free Approach to Control-Flow Analysis. In Proceedings
of the 19th European Conference on Programming Languages and Systems (ESOP’10). Springer-Verlag, Berlin, Heidelberg,
570–589. https://doi.org/10.1007/978-3-642-11957-6_30

[52] Dimitrios Vardoulakis and Olin Shivers. 2011. Pushdown Flow Analysis of First-class Control. In Proceedings of the
16th ACM SIGPLAN International Conference on Functional Programming (ICFP ’11). ACM, New York, NY, USA, 69–80.

https://doi.org/10.1145/2034773.2034785

[53] Christopher P. Wadsworth. 1971. Semantics and Pragmatics of the Lambda-calculus. Ph.D. Dissertation. University of

Oxford.

[54] Stephen Weeks. 2006. Whole-program Compilation in MLton. In Proceedings of the 2006 Workshop on ML (ML ’06).
ACM, New York, NY, USA, 1–1. https://doi.org/10.1145/1159876.1159877

[55] Qirun Zhang and Zhendong Su. 2017. Context-sensitive Data-dependence Analysis via Linear Conjunctive Language

Reachability. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages (POPL 2017).
ACM, New York, NY, USA, 344–358. https://doi.org/10.1145/3009837.3009848

[56] Xin Zhang, Mayur Naik, and Hongseok Yang. 2013. Finding Optimum Abstractions in Parametric Dataflow Analysis.

In Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’13).
ACM, New York, NY, USA, 365–376. https://doi.org/10.1145/2491956.2462185

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: August 2019.

http://dl.acm.org/citation.cfm?id=1781794.1781799
https://doi.org/10.1007/978-1-4615-2207-2_8
https://doi.org/10.1145/1069774.1069785
https://doi.org/10.1007/978-3-642-24206-9_14
https://doi.org/10.4230/LIPIcs.ECOOP.2016.22
https://doi.org/10.4230/LIPIcs.ECOOP.2016.22
https://doi.org/10.1145/1291151.1291166
https://doi.org/10.1145/1411204.1411243
https://doi.org/10.1007/978-3-642-11957-6_30
https://doi.org/10.1145/2034773.2034785
https://doi.org/10.1145/1159876.1159877
https://doi.org/10.1145/3009837.3009848
https://doi.org/10.1145/2491956.2462185

	Abstract
	1 Introduction
	2 Analysis Overview
	2.1 A Simple Language
	2.2 The Basic Analysis
	2.3 Non-Local Variable Lookup
	2.4 Function Call Lookup
	2.5 Recursion and Decidability

	3 Implementation Overview
	3.1 The Basic Analysis – Revisited
	3.2 Pushdown Reachability Automata

	4 The Analysis
	4.1 Lookup
	4.2 Abstract Evaluation

	5 A Graph-Based Operational Semantics
	5.1 Closure-Based Operational Semantics
	5.2 A Stackless Operational Semantics
	5.3 An Operational Semantics with Lazy Lookup
	5.4 DDPAc: A Graph-Based Operational Semantics
	5.5 Overall Equivalence

	6 Soundness
	6.1 DDPAc
	6.2 DDPA

	7 Decidability
	7.1 Decidable Lookup
	7.2 Proof of Decidability

	8 Implementing Lookup
	8.1 Pushdown Reachability
	8.2 Pushdown Reachability Automata
	8.3 Pushdown Reachability Closure
	8.4 From Inductive Definition to PDR Specification

	9 Extensions
	9.1 Records
	9.2 Conditional Branching
	9.3 Filtering for path sensitivity
	9.4 State

	10 Evaluation
	10.1 Goals
	10.2 Test Cases
	10.3 Experiments
	10.4 Results
	10.5 Analysis
	10.6 Threats to Validity

	11 Related Work
	11.1 Implementation Techniques
	11.2 Other DDPA Precursors

	12 Conclusion
	References

